Computer algebra: Formalization and applications to network reliability and biomedical image processing

Guanajuato, Nov 20th 2018

Eduardo Sáenz de Cabezón

Universidad de La Rioja (Spain)

Main research lines

- 1. New concepts and relations in the homological approach to commutative algebra and algebraic topology.
- 2. Implement homological algorithms, develop formal verification of algorithms, integrate both in usable systems.
- 3. Application of concepts and algorithms of homological algebra and algebraic topology to biomedical images analysis and system reliability

Goals

- 1. **Commutative algebra:** relations between ideals and simplicial complexes via polarization and depolarization, extend to persistence homology for ideals. Algorithms.
- 2. Algebraic Topology: Bousfiled-Kan spectral sequence in the context of effective homology. Complete implementation (includes central extensions, cosimplicial spaces, fiber towers, multi persistence).
- 3. Formalization: Smith reduction, persistence homology
- 4. **Formalizations optimization:** using modular arithmetic in formalizations to keep data size under control
- 5. **Generation of verified programs:** try to obtain verified and efficient programs. First example: polynomial factorization

Goals

- 6. **Applications:** Computational algebraic algorithms for biomedical images and network reliability
- 7. **Reliability:** Multi-state systems using algebraic analysis (includes filtrations, polarization and depolarization).
- 8. **Framework:** Integration of computer algebra algorithms in a framework for biomedical images analysis
- 9. **Framework extension:** Extension of this framework to incorporate and collaborate with algorithms in different contexts (includes statistics, geometry or automated learning)

The research group

- 10 researcher + 6 collaborators
- Institutions involved:
 - Universidad de La Rioja (project base)
 - Institut Fourier (France)
 - London School of Economics (UK)
 - University of Bristol (UK)

Commutative Algebra and System Reliability

A system S has n components each of which can be in several states, the system itself can be in several states.

Reliability problem:

- Data:
 - probability that each component is in a given state
 - Structure function: what component states correspond to what system state
- Question:
 - Can we obtain the probability that the system is performing at level j?

Commutative Algebra and System Reliability

6

7

8

Algebraic approach:

- Associate a monomial ideal to each level of performance
- Obtain a minimal generating set
- Compute Hilbert series to obtain reliability polynomial

 $\{\{1,6\},\{1,4,7\},\{2,4,6\},\{1,4,5,8\},\{2,7\},\{3,4,5,6\},\{2,5,8\}\{3,5,7\},\{3,8\}\}$

$I_{\mathcal{S}} = \langle$	$\langle x_1x_6, x_1x_4x_7, x_2x_4x_6, x_1x_4x_5x_8, x_2x_7, x_3x_4x_5x_6, x_2x_5x_8, x_3x_5x_7, x_3x_4x_5x_6, x_2x_5x_8, x_3x_5x_7, x_3x_7, x$	$x_8\rangle$.
-----------------------------	--	----------------

Method	Total	0	1	2	3	4	5	6	7	8
Taylor (inc-exc)	511	9	36	84	126	126	84	36	9	1
Scarf (abstr. tube)	103	9	27	37	24	6	0	0	0	0
Hilbert Series (min. res.)	87	9	25	31	18	4	0	0	0	0

 $\mathbf{2}$

3

5

Applications in which the group is working:

- 1. Synapse counting
- 2. Genetic footprint in DNA gel
- 3. Bacterial resistance to antibiotics
- 4. Fungi biotecnology

Biological problem: measuring synapse density in neurons

Goal: automatization of synapse counting

G. Mata et al. *SynapCountJ:* A Validated Tool for Analyzing Synaptic Densities in Neurons. Communications in Computer and Information Science 690:41-55, 2017.

Task 1: Synapse detection

Task 1: Synapse detection

Task 2: Synapse editing

138.23x117.20 microns (2484x2106); RGB; 20MB

Task 3: Synapse counting

Final Result: SynapCountJ, implemented in ImageJ

	Label	Length in pixels	Length in micras	Synapses	Density	Red	Green
1	Tracing N1:	1833.1058	91.6553	71	77.4642	116	164
2	Tracing N2:	867.7840	43.3892	35	80.6652	116	164
3	Tracing N3:	983.5322	49.1766	53	107.7748	116	164
4	Tracing N4:	599.8320	29.9916	41	136.7049	116	164
5	Tracing N5:	437.7388	21.8869	25	114.2234	116	164
6	Tracing N6:	468.8438	23.4422	26	110.9111	116	164
7	Tracing N7:	447.6296	22.3815	31	138.5074	116	164
8	Tracing N8:	574.3691	28.7185	38	132.3191	116	164
9	Tracing N9:	1776.2572	88.8129	69	77.6915	116	164
10	Tracing N10:	1224.7374	61.2369	45	73.4851	116	164
11	Tracing N11:	355.7054	17.7853	26	146.1884	116	164
12	Tracing N12:	905.3750	45.2688	45	99.4063	116	164
13	Total Neuron	10474.9103	523.7455	479	91.4566	116	164

Improvement: Zig-zag homology to avoid 3D crossings

Biological problem: compare DNA patterns

Goal: Semi-automatization of the analysis of genetic footprint gels

J. Heras et al. *GelJ -- a Tool for Analyzing DNA Fingerprint Gel Images.* BMC Bioinformatics 16(270), 2015.

Task 1: Detect and edit rails

Task 2: Detect and edit strain

Task 3: Compare lanes

A	В	C	D	E	F
	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5
Lane 1	1.0	0.66	1.0	1.0	0.92
Lane 2	0.66	1.0	0.66	0.66	0.57
Lane 3	1.0	0.66	1.0	1.0	0.92
Lane 4	1.0	0.66	1.0	1.0	0.92
Lane 5	0.92	0.57	0.92	0.92	1.0

Final result:GelJ, free tool developed in Java combining ImageJ and Weka

A	В	C	D	E	F
	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5
Lane 1	1.0	0.66	1.0	1.0	0.92
Lane 2	0.66	1.0	0.66	0.66	0.57
Lane 3	1.0	0.66	1.0	1.0	0.92
Lane 4	1.0	0.66	1.0	1.0	0.92
Lane 5	0.92	0.57	0.92	0.92	1.0

Biological problem: measuring bacterial resistance to antibiotics

Goal: Determine, measure and categorize in an automatic or semi-automatic way zones of antibiotic inhibition,

A. Alonso et al. *AntibiogramJ: a Tool for Analysing Images in Biomedicine.* Computers in Biology and Medicine 84:189-194, 2017.

Task 1: Disk detection and management

Task 2: Detect, measure and categorize halos

Task 2: Detect, measure and categorize halos

Final result: AntibiogramJ, free tool developed in Java combining ImageJ and OpenCV

Final result: AntibiogramJ, free tool developed in Java combining ImageJ and OpenCV

Computer algebra: Formalization and applications to network reliability and biomedical image processing

Guanajuato, Nov 20th 2018

Eduardo Sáenz de Cabezón

Universidad de La Rioja (Spain)

eduardo.saenz-de-cabezon@unirioja.es UNIVERSIDAD DE LA RIOJA