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What kinds of data?

Shapes

• 1D: curves (in R
2 or R3, say)

• 2D: photographs
• 3D: MRI, DTI, SPECT, PET, CAT, integrated photo

– cricket sclerites

– brain arteries

– lung airways

– fiber tracts

• (2+1)D: video (.mp4, .mov, ...)

• 4D: fMRI, or any time series of spatial 3D
• arbitrary D: abstract geometric structures from data

– any bunch of isolated points in R
n (!), especially for n≫ 0

– any reasonable probability distribution

Networks

• neurological

• metabolic

• regulatory (genetic)

• phylogenetic

• physical: road maps, plant roots, neuronal (dendritic), . . .
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:

2
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A. apoplanos

courtesy Elen Oneal
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Brain arteries

[Bullitt and Aylward, 2002]
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Lung airways (COPD study)

[Belchi, Pirashvili, Conway, Bennett, Djukanovic, Brodzki 2018]
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Streamlines from Diffusion Tensor Imaging

courtesy Zhengwu Zhang
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fMRI

courtesy Nicole Lazar
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Amphiacusta phylogeny
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq ; k)}q∈Q .

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q � q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

9
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Example: expanding balls
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Example: expanding balls

dim(H0) = 26
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Example: expanding balls

dim(H0) = 21
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Example: expanding balls

dim(H0) = 12
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq ; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q � q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module
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Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set

• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set given as points in R
2

• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set given as points in R
2

• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set given as points in R
2

• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set given as points in R
2

• 2nd parameter: distance from edge set given as Bézier curves

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set given as points in R
2

• 2nd parameter: distance from edge set given as Bézier curves

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set given as points in R
2

• 2nd parameter: distance from edge set given as Bézier curves

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Example: wing vein persistence [w/Houle, Thomas, Beriwal]

Example 1. Encode fruit fly wing with 2-parameter persistence

• 1st parameter: distance from vertex set (require distance ≥ −r )

• 2nd parameter: distance from edge set (require distance ≤ s)

Sublevel set Wr ,s is near edges but far from vertices

Multiscale summary. Set Hr ,s = H0(Wr ,s) or H1(Wr ,s)

Z
2-module:

↑ ↑ ↑
→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑
→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑
→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
12



Data Persistence Fly wings Probability History Biology Tameness Presentation Syzygy theorem (Co)generators Decomposition Future

Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′
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Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{

x ∈ M | F (x) ≥ 1/s
}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{

Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Topological Data Analysis (TDA): Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν)↔ statistics of ν

13
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Topology of probability distributions

images taken from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,

Annals of Statistics 42 (2014), no. 6, 2301–2339.
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presentation, primary decomposition, finite encoding
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq ; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q � q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q � q′ � q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

9’’’’
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History of persistent homology

Ordinary persistence
• traces back to [Morse 1940s]

• formally invented [Frosini, Landi 1999], [Robins 1999]

• efficient computation [Edelsbrunner, Letscher, Zomorodian 2002]

• further theoretical developments [too many to list; mostly 2006– ]

• applications [too many to list; a few early ones, but most roughly 2013– ]

Multiparameter persistence
• invented [Carlsson, Zomorodian 2009]

• algorithms, presentations, visualizations, notions of noise
[Carlsson, Chachólski, Lesnick, Scolamiero, Vaccarino, Wright, Zomorodian,. . . ]

• assume finitely presented and
• apply standard combinatorial commutative algebra (i.e., Zn-modules)

Structure theory
• restrict to parameter lines [Cagliari, Di Fabio, Ferri, Lesnick, Wright,. . . 2010– ]

• finitely presented⇒ Krull–Schmidt:
⊕

indecomposables [Lesnick 2011]

• discretely generated monomial ideals [Ingebretson, Sather-Wagstaff 2013]

• apply (noncommutative) quiver representation theory

15
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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Fruit fly wings

photographic image
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Fruit fly wings

spline
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Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields

• skew toward more oddly shaped wings, but also
• much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes

continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
• "plot" wings in "form space"
• determine whether topological variants lie "in the direction of" continuous

shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving

appropriate weight to new singular points in addition to varying shape

• compare phenotypic distance to genotypic distance; needs
• metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects statistics with

multiparameter persistence diagrams as data objects

Need. Data structures, algorithms, theoretical guarantees
17
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Topological tameness

Finiteness conditions: • Zn-modules: finitely generated⇔ noetherian

• Rn-modules from data analysis↔ ??

Def [–]. H admits a constant subdivision if Q is partitioned into

• constant regions A vector space HA−→
∼ Ha for all a ∈ A with

• no monodromy: all comparable pairs a � b with a ∈ A and b ∈ B induce

the same composite HA → Ha → Hb → HB.

H is tame if dimk Hq <∞ and admits a finite constant subdivision.

Example. k0 ⊕ k[R2] admits constant regions {0} and R
2
r {0}

Example. Fix a poset Q.

• upset U ⊆ Q if U =
⋃

u∈U Q�u

• downset D ⊆ Q if D =
⋃

d∈D Q�d

For any subset S ⊆ Q, set k[S] = {ks}s∈S.

19
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Upsets and downsets

Examples
• In R

2:

U = and = D

• In R
3:

U =

semialgebraic

or

piecewise linear

= D

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187–216]
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Upsets and downsets

Examples. In R
2 again,

• k[U] is flat if U =

y

x

y

x

y

x

y

x

• k[D] is injective if D =

21
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Presenting poset modules

Default.
• free presentation
• injective copresentation

Def [–]. An R
n-module H is finitely encoded if it has either

• an upset presentation, namely a homomorphism

k[U1
′]⊕ · · · ⊕ k[Uℓ

′]→ k[U1]⊕ · · · ⊕ k[Uk ]

with cokernel ∼= H, or
• a fringe presentation, namely a homomorphism

k[U1]⊕ · · · ⊕ k[Uk ]→ k[D1]⊕ · · · ⊕ k[Dℓ]

with image ∼= H.

Data structure: monomial matrix

U1

...

Uk





D1 · · · Dℓ

ϕ11 · · · ϕ1ℓ

...
. . .

...

ϕk1 · · · ϕkℓ





k[U1]⊕ · · · ⊕ k[Uk ] −−−−−−−−−−−−−−−−→ k[D1]⊕ · · · ⊕ k[Dℓ]
22
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Presenting poset modules

Over R2: free presentation

0← և ←

Over R2: injective copresentation

→ has kernel

23
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Presenting poset modules

Default.
• free presentation
• injective copresentation

Def [–]. An R
n-module H is finitely encoded if it has either

• an upset presentation, namely a homomorphism

k[U1
′]⊕ · · · ⊕ k[Uℓ

′]→ k[U1]⊕ · · · ⊕ k[Uk ]

with cokernel ∼= H, or
• a fringe presentation, namely a homomorphism

k[U1]⊕ · · · ⊕ k[Uk ]→ k[D1]⊕ · · · ⊕ k[Dℓ]

with image ∼= H.

Data structure: monomial matrix

U1

...

Uk





D1 · · · Dℓ

ϕ11 · · · ϕ1ℓ

...
. . .

...

ϕk1 · · · ϕkℓ





k[U1]⊕ · · · ⊕ k[Uk ] −−−−−−−−−−−−−−−−→ k[D1]⊕ · · · ⊕ k[Dℓ]
22’’
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→֒

։

has cokernel

presentation: upset fringe

In R
2:

←֓

upset

presentation

has cokernel

→

fringe

presentation

has image
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Presenting poset modules

Default.
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Default.
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Syzygy theorem

Thm [–]. A Q-finite module H is finitely encoded if and only if it admits one,

and hence all, of the following:

1. a finite constant subdivision (i.e., H is tame); or

2. a finite fringe presentation; or

3. a finite upset presentation; or

4. a finite downset copresentation; or

5. a finite upset resolution; or

6. a finite downset resolution.

Consequence. (Homological) algebra of H reduces to that of k[U] or k[D].

Other commutative algebra. Minimal primary decomposition

25
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Generators and cogenerators
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y
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Generators and cogenerators

closed death

open birth

open death

shape ∆: simplicial
subcomplex of Rn

+

∆ = {0}
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+

x
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Decomposition

Def. socτH = module of deaths along τ = upper boundary of H parallel to τ

Def. Hτ τ -coprimary if all cogenerators have type τ

Thm [–]. Finitely encoded R
n-modules admit minimal primary decomopsition:

H →֒
⊕

faces τHτ with Hτ coprimary and socτH−→∼ socτHτ

x

y

=
x

y

∪
x

y

∪
x

y

k

















x

y

















→֒ k

















x

y

















⊕ k

















x

y

















⊕ k

















x

y

















essential point:

Thm [–]. ϕ : M →֒ N ⇔ socτϕ : socτM →֒ socτN for all faces τ .

Pf. Develop commutative algebra over k[Rn
+] without noetherian hypotheses

27
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Next lectures

II. Tameness and encoding

• bar codes

• posets

• modules over posets

• constant subdivision

• tameness

• encoding

III. Presentation and decomposition: algebraic structures for computation

• covers and presentations: births

• hulls and copresentations: deaths

• primary decomposition

• fringe presentation: birth-and-death description

• equivalence of finiteness conditions
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Future directions

Biology. Test topological novelty hypothesis

• mark up wings with weird topology
• statistically analyze biparameter persistence summaries

Commutative algebra
• distance between modules via K -theory
• minimal resolution length in syzygy theorem

Computation
• calculate encoding / fringe presentation from vertices and Bézier curves
• homological algebra with (semialgebraic) upset and downset modules

Topology. Biparameter persistence as persistent intersection homology

Algebraic geometry. Kashiwara–Schapira conjecture: finite encoding as

λ-stratification of constructible sheaf in γ-topology

Probability. Bootstrapping persistent homology: compare homology from

one (large) dataset to homology from (relatively) few small subsamples

• feature strength↔ likelihood of appearing in appropriate-size subsample
• parallelize (persistent) homology computations
• yield probabilistic answers to probabilistic questions
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