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Synchronisation in examples



Synchronisation

Synchronisation problems deal with questions regarding aligning a

collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., on) and a group (or collection

of groups) G the objective is to learn a collection of group elements

ρij that would transform object oi to oj in a consistent way.

We’d like to get as close as possible to a group action, so if

ρij : oi 7→ oj and ρjk : oj 7→ ok then

ρik = ρij ◦ ρjk : oi 7→ ok .

If it is possible to find a sequence of group elements that allow for

an accurate transformation between objects then this set can be

synchronised.
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Examples of synchronisation

• Orientability of manifolds [Singer, Wu (2011)]: G = O(1);

• Angular synchronisation [Singer (2011)]: G = U(1);

• Vector diffusion maps [Singer, Wu (2012)]: G = O(d);

• Collection Shape Matching [Nguyen et al. (2011)], [Huang,

Guibas (2013)], [Chen et al. (2014)], [Maron et al. (2016)]:

G = Ed ;

• Cryo-EM Structural Reconstruction [Singer et al. (2011)],

[Shkolnisky, Singer (2012)], [Zhao, Singer (2014)], [Bandeira

et al. (2015)]: G = SO(3)
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Differentiable manifolds

A differentiable manifold M is a topological space equipped with

an atlas {Uα} which is an open cover of M such that for every α

there is a homeomorphism

φα : Uα → Rn

which are such that for every nonempty overlap Uα ∩ Uβ the

transition map

gαβ = φα ◦ φ−1β : φβ(Uα ∪ Uβ)→ φα(Uα ∪ Uβ)

is a diffeomorphism of open subsets of Rn.
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Orientable manifolds

A manifold is orientable iff it admits an oriented atlas, i.e., an atlas

{Uα} such that all the transition maps gαβ are orientable.

This in turn means that the Jacobian of each such map has an

everywhere positive determinant.

Question:

How can one determine if a given manifold is orientable starting

from a sample of points of M?
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Orientable diffusion maps, Singer and Wu 2011

Assume given points S = {x1, x2, . . . , xn} sampled from some Rp;

we assume that these points lie on a submanifold M of Rp.

What is a good notion of tangent space in this case?
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Principal Component Analysis PCA

• PCA was invented by Karl Pearson in 1901

• It provides a way of reducing the dimension of data, which is

particularly useful when trying to visualise data in two or three

dimensions.
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Local PCA

Choose xi ∈ S and identify its K nearest neighbours, where

K << n. These points xi1 , . . . , xiK are located near the tangent

space TxiM. There may of course be deviations due to noise or

curvature of M.
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Local PCA

Let µ be the average of the nearest neighbours of xi :

µ =
1

K

K∑

k=1

xik

and form the matrix of vectors

Xi = [xi1 − µ xi2 − µ . . . xiK − µ].

So the k-th column is the vector xik − µ and the matrix is of size

p × K .
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Local PCA

Xi = [xi1 − µ xi2 − µ . . . xiK − µ].

Assume that the dimension of M from which the points xi are

sampled is d .

If the nearest points xik to xi are elements of TxiM (more precisely:

the vectors xik − xi are elements of TxiM) then the matrix X will

have d linearly independent columns, i.e., its rank is d .

This can be detected through the singular values of Xi .
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Singular Value Decomposition

Assume A is a rectangular m × n matrix; A ∈ Cm×n, with m ≥ n.

A singular value decomposition of A is

A = U

(
Σ

0

)
V ∗

where

Σ =



σ1

. . .

σn


 , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

and U ∈ Cm×m and V ∈ Cn×n are unitary. The numbers σk are

called singular values.

The matrix U is a left singular vector matrix, and V is the right

singular vector matrix.
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Singular Value Decomposition

• A m × n matrix has min{m, n} singular values.

• The singular values are unique, but the singular vector

matrices are not.

• If A = U

(
Σ

0

)
V ∗ is an SVD decomposition of A then

A∗ = V (Σ 0)U∗

is a SVD of A∗. So A and A∗ have the same singular values.

• A is nonsingular iff all its singular values are nonzero.

• The rank of a matrix is the number of its nonzero singular

values.

• Vectors of U corresponding to the nonzero singular values

span the column space of A (the image of A regarded as a

linear operator).
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SVD example




1 2

3 4

5 6

7 8


 =




−0.1525 −0.8226 −0.3945 −0.3800

−0.3499 −0.4214 0.2428 0.8007

−0.5474 −0.0201 0.6979 −0.4614

−0.7448 0.3812 −0.5462 0.0407




×




14.2691 0

0 0.6268

0 0

0 0




×
(
−0.6414 0.7672

−0.7672 −0.6414

)
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Estimating the dimension

The number of nonzero singular values σi ,k of Xi can be taken to

be the dimension of Txi (M). This however, is not quite accurate

because of noise and curvature of M.

Choose a threshold γ ∈ [0, 1]. In practice γ is closer to 1 than 0.

We estimate the dimension di of TxiM as the smallest integer di

for which ∑di
k=1 σ

2
i ,k∑K

k=1 σ
2
i ,k

> γ.

The intuition here is that we want to consider the singular values

that account for a high enough percentage of the variability of the

data.

E.g., if γ = 0.9 then di singular values account for at least 90% of

the variability of the data, but di − 1 singular values will account

for less than 90%.

The integer di is the local dimension of M at xi .
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Estimating the dimension

Having estimated the local dimension di for all i = 1, . . . , n we

need an estimate of the global dimension. Possible options are:

The mean

d =
1

n

n∑

i=1

di

rounding to the nearest integer. This minimises the sum of squared

errors
n∑

i=1

(di − d)2.
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Estimating the dimension

Having estimated the local dimension di for all i = 1, . . . , n we

need an estimate of the global dimension. Possible options are:

The median

d = median (d1, d2, . . . , dn).

This minimises the `1-error

n∑

i=1

|di − d |.

This is more robust with respect to outliers than the mean

estimator.
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Local coordinate frame

Consider again the matrix describing the shifted local

neighbourhood of xi :

Xi = [xi1 − µ xi2 − µ . . . xiK − µ].

Assume that the matrix Xi has an SVD decomposition

Xi = UiΣiV
t
i ,

where the columns of the p × K matrix Ui (the left singular

vectors) are orthonormal.
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Local coordinate frame

Define the matrix Oi by

Oi = [ui1ui2 . . . uid ]

where the column vectors uij are the first d left singular vectors of

the matrix Xi (arranged in the decreasing order of the singular

values)

The columns of Oi provide an approximation of an orthonormal

basis of the tangent space Txi (M).
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Alignment

Now consider two nearby points xi and xj which which are each

other’s nearest neighbours. We have identified their local frames,

can we map one to the other?
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Alignment

We have found matrices Oi and Oj approximating the tangent

spaces at each point. Because of possible noise or curvature

effects, the matrix OT
i Oj need not be orthogonal, and we define

Oij to be an orthogonal matrix which is closest to OT
i Oj :

Oij = argmin ‖O − OT
i Oj‖

where the minimum is taken over all orthogonal matrices

O ∈ O(d).

This has the following solution.

If the SVD of OT
i Oj is

OT
i Oj = UΣV T

then

Oij = UV T .
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Alignment

The process of finding optimal orthogonal transformations between

bases is called alignment.

Given that Oij ∈ O(d), we have that detOij = ±1 where

• detOij = 1 iff Oij ∈ SO(d), so it is a ‘rotation’

• detOij = −1 iff Oij is a composition of a rotation and a

reflection.

Note that this only works between nearby points, and the outcome

can be encoded as a graph G = (V ,E ) with vertices corresponding

to the n data points, and where an edge (i , j) exists iff there is a

corresponding matrix Oij .
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Synchronisation

We can encode the results of our investigation so far by defining a

matrix

Zij =





detOij , if (i , j) ∈ E

0, otherwise

For each point xi we have a basis defined by local PCA as well as a

basis given by the ambient manifold.

Define:

zi =





1, if the orientations agree

−1, otherwise.

Clearly,

ziz
−1
j = Zij .
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Synchronisation

In practice, because of the curvature and noise, the relation

ziz
−1
j = Zij .

will not necessarily hold for all edges.

Synchronisation in this case refers to finding the function z on the

vertices (z takes values in Z2) for which this equation holds. When

the manifold is orientable, this solution exists, while for

nonorientable manifolds we will find two classes of frames

connected by matrices of determinant 1.
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Angular synchronisation

Problem

Find an accurate estimation of a set of unknown angles θ1, . . . , θn

from m noisy measurements of the differences θi − θj .

A main motivation for this problem comes from systems of coupled

oscillators. This is relevant, e.g., in power grids where generators

on the network need to be synchronised very precisely.
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Angular synchronisation

Other applications include

• Time synchronisation of distributed networks given the

differences ti − tj from which we need to determine the times

t1, . . . , tn ∈ R.

• Surface reconstruction in computer vision and optics, where

the surface is reconstructed from noisy measurements of the

gradient of the surface.
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Angular synchronisation

Main problem: given the set of differences θi − θj (call them

offsets), we do not know which of them are reliable, and which are

noise.

So there are two kinds of edges in the synchronisation graph G:

δij = θi − θj (i , j) ∈ Egood

δij ∼ Uniform([0, 2π)) (i , j) ∈ Ebad.

We note that cycles in the graph G satisfy the following

consistency relation. For a triangle of ‘good’ edges (i , j), (j , k),

and (k , i) we have

δij + δjk + δki = 0 mod 2π.

This will be quite important in later lectures.
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Measuring similarity through orthogonal transformations

The following new framework emerges from our examples:

• Similarity between data points is described by a graph of

relationships G;

• If two points are similar enough, they are connected by and

edge with a weight that quantifies their affinity.

• Many examples show that apart from a weight, it may be

useful to have an orthogonal transformation attached to an

edge.
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Image classification

1 1
2

To each pair we would like to assign an orthogonal transformation

Oij that best aligns the images and a weight wij describing their

measure of affinity.
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Vector diffusion maps (Singer, Wu 2012)

Given a graph G = (V ,E ) of relationships define

Si ,j =




wijOij , (i , j) ∈ E

0 otherwise

where Oij ∈ O(d), 0 ∈ O(d). We assume wij = wji and Oji = OT
ij .

As previously, we assume that we have identified tangent spaces at

data points in V and want to create a suitable ‘parallel transport’

operator to compare the tangent spaces at nearby points. These

are called diffusion maps.
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Diffusion maps

Vertex degree:

deg(i) =
∑

j∼i
wij .

D(i , i) = deg(i)Id×d .

Now for xi ∈ V consider a vector v(i) ∈ Rd regarded as an

element of Rd .

‘Divergence’

(D−1Sv)(i) =
1

deg(i)

∑

j∼i
wijOijv(j).
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Affinity

To encode affinity between vertices i and j (we will frequently

simplify the notation xi and xj for vertices) consider a path γ of

length t connecting i and j , e.g., a sequence of consecutive edges

of length t, and take

O(γ) = Oi=i0,i1Oi1i2 . . .Oit−1,it=j

This orthogonal transformation will a priori depend on the path γ,

and we will return to this point later.

A main point of the VDM approach is the characterisation of the

size of this orthogonal transformation.
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Affinity estimation

Recall that we have defined a d × d matrix

Si ,j =




wijOij , (i , j) ∈ E

0 otherwise

where Oij ∈ O(d), 0 ∈ O(d).

Affinity is a measure of compatibility between transformations

obtained by following different paths from i to j .

This is measured using the matrix

S̃ = D−1/2SD1/2

which is similar to the matrix D−1S introduced earlier.
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Affinity

The affinity between vertices i and j is defined as follows. For a

natural number t consider all paths from i to j of length 2t, and

put:

At(i , j) = ‖S̃2t(i , j)‖2HS
where ‖ − ‖ is the Hilbert-Schmidt norm of this matrix:

‖T‖HS =


∑

i ,j

|Tij |2



1/2
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Affinity

The matrix S̃ is symmetric, so it has a complete set of eigenvectors

v1, . . . , vnd and eigenvalues λ1, . . . , λnd .

Then

S̃(i , j) =
nd∑

l=1

λlvl(i)vl(j)
T ; S̃2t(i , j) =

nd∑

l=1

λ2tl vl(i)vl(j)
T

where v(i) ∈ Rd .
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Affinity

‖S̃2t(i , j)‖2HS = Tr(S̃2t(i , j)S̃2t(i , j)T )

=
nd∑

l ,r=1

(λlλr )2t〈vl(i), vr (i)〉〈vl(j), vr (j)〉

= 〈Vt(i),Vt(j)〉

where

Vt : i 7→ (λlλr )2t〈vl(i), vr (i)〉

and l , r = 1, . . . , nd .
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Cryoelectron microscopy

Picture from Picture from Singer, Shkolnitsky via Baideira Ten

lectures and forty two problems . . .
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Cryoelectron microscopy

The pixel intensity of the projection is described as

Pi (x , y) =

∫ ∞

−∞
φi (x , y , z)dz

where z is the direction of the imaging electrons. Here φi is

defined as follows.

Let φ(x , y , z) be the electric potential of the ‘laboratory molecule’,

then

φi (x , y , z) = φ(R−1i (x , y , z)),

where Ri is the SO(3) matrix moving the laboratory molecule to

its position when it is X -rayed.

Problem: Find the rotation matrices Ri .
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Cryoelectron microscopy

Note that for two molecules i and j the element of SO(3) given by

ρ(i , j) = RjR
−1
i

represents a measure of similarity between two projections.

A different version of the same question: can we work out the

necessary group actions ρ(i , j)?

37



Shape transport

Picture from Sayan Muhkerjee
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Object alignment

Picture from Sayan Muhkerjee
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Data Acquisition: microCT (High Resolution X-ray CT)

Surface reconstructed from µCT-scanned voxel data
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Landmarked Teeth −→

d2
Procrustes (S1,S2) = min

R rigid motion

1

k

k∑

j=1

‖R (xj)− yj‖2

Boyer et al. ”Algorithms to Automatically Quantify the Geometric Similarity of Anatomical

Surfaces.” Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.
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Myriads of Shape Distances...

dcWn (S1,S2): Conformal Wasserstein Distance (CWD)

dcP (S1,S2): Continuous Procrustes Distance (CPD)

dcKP (S1,S2): Continuous Kantorovich-Procrustes Distance (CKPD)
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Shape Space

The comparisons are mostly local and work best over small

distances.
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CT scans
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Geometry of synchronisation



Classifying objects
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Classifying objects
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Classifying objects
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Synchronisation

Synchronisation problems deal with questions regarding aligning a

collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., on) and a group (or collection

of groups) G the objective is to learn a collection of group

elements ρij that would transform object oi to oj .

If it is possible to find a sequence of group elements that allow for

an accurate transformation between objects then this set can be

synchronised.
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Synchronization problem with noise

yi = Rix + ξi

Ri ∈ O(d), ξi ∼ i.i.d. noise

Afonso S. Bandeira. “Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science.” (2015). 47



Spectral properties of graphs



Basics of graph theory

• Assume given a graph G , with a set of vertices V and a set of

edges E . For simplicity we assume that G has no loops or

multiple edges. (This assumption can be removed.) For a

vertex v we denote its degree (or valency) by dv : this is the

number of edges that meet at v .

• Is it possible to measure the level of complexity of the graph?

• For example, how well connected is the graph? Does it have

bottlenecks? How easy is it to disconnect it into components?
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Basics of graph theory

The topological structure of the graph does not capture the

functional information about the system it describes. To include

this information, we use edge weights. A typical example of an

edge weight is a function w : V × V → R≥0 such that

1. w(i , j) = w(j , i) for all i , j ;

2. w(i , j) = 0 if (i , j) 6∈ E ;

3. w(i , i) =
∑N

j=1 w(i , j).

In what follows, we will use more general weights that will be

allowed to take values in groups, modules over groups, etc.

49



The discrete Laplacian

The discrete Laplace operator is defined on the space of functions

g : V → C on the set of vertices V .

∆g(u) =
∑

v∼u
(g(v)− g(u))

where v ∼ u means that the two vertices are adjacent.

The Laplacian is the composition of two operations:

• ‘gradient’ (or derivative): d : C (V )→ C (E ),

df (u, v) = f (v)− f (u), where u, v are ends of one edge;

• ‘divergence’: ∂ : C (E )→ C (V );

∂φ(u) =
∑

u∼v
φ(u, v).
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The discrete Laplacian

Since the graph is finite, C (V ) = Rnumber of vertices,

C (E ) = Rnumber of edges, and the operators d , ∂, ∆ are given by

matrices of a suitable size.

The Laplacian matrix of G is the N × N matrix L defined as

[L]ij =





di , if i = j ;

−wij , if i 6= j and (i , j) ∈ E ;

0, otherwise.

It is a real symmetric matrix with non-positive entries outside the

diagonal, and the sum of each column (or row) is zero.
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Normalized Laplacian

The normalized Laplacian is the matrix Ln = D−1/2LD−1/2, where

D is the diagonal matrix with nonzero entries

di =
∑

i∼j
w(i , j).

That is,

[Ln]ij =





1, if i = j ;
−wij√
di
√

dj
, if i 6= j and (i , j) ∈ E ;

0, otherwise.

The normalized Laplacian is scale-independent, and it is more

advantageous for clustering purposes.
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Some properties of the Laplacian

1. When the graph G is connected, the kernel of the Laplacian

consists of constant functions. So while ∆ is not invertible, it

fails to be invertible on a one-dimensional space.

2. The operator ∆ is positive, so it has real, nonnegative

eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λn−1.

3. The first non-zero eigenvalue λ1 is particularly interesting. It

can measure ‘the growth’ of the graph; an example of this is

the edge expansion.
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Isoperimetric problems

• A classical problem in graph theory: Remove as few edges as

possible to separate the graph into two parts of almost equal

size.

• There are many problems of this general type: Remove as

little of the graph as possible to separate out a subset of

vertices of some desired ‘size’. (These are called ‘separator

problems’.)

• An edge-cut is a subset of a set of edges which disconnects

the graph.

• Cheeger constants appear in isoperimetric problems involving

edge-cuts. They are also important in flow or routing

problems on graphs.
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The edge expansion of a graph

Let S be a subset of the vertex set

of G . The edge boundary ∂S of S

consists of all edges with exactly

one end in S . This is the same as

∂S , where S = G \ S .

What is the typical size of the

boundary ∂S? This information

indicates the level of connectedness

of the graph.

S

55



Edge expansion

The volume of a subgraph spanned by a subset S ⊂ V is:

vol(S) =
∑

i∈S
di =

∑

i∈S
wii .

The boundary of S is the sum of the weights of the edges between

vertices in S and vertices not in S :

∂(S) =
∑

i∈S ,j 6∈S
wij .

The edge expansion of S as the quotient

φ(S) =
∂(S)

vol(S)
.
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Spectral clustering

We will be interested in the question of clustering on graphs, that

is, a partition of the set of vertices V
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Spectral clustering

We will be interested in the question of clustering on graphs, that

is, a partition of the set of vertices V

For this, the edge expansion is a useful indicator of quality:

φ(S) =
∂(S)

vol(S)
.

φ(S) is small if the vertices of S are more connected among

themselves than they are to the complement of S .
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Edge expansion
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The Cheeger constant

hG = min

{ |∂S |
volS

}

For graphs with bottlenecks,

the Cheeger constant will be

small, close to zero.

Graphs with well connected

components will have a larger

Cheeger constant.

Here |∂S | = 2 so

|∂S |/ volS → 0 as the size of

S grows.
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Cheeger inequality

We have the isoperimetric inequality

λ1/2 ≤ hG <
√

2λ1.
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Expander graphs
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Applications of spectral clustering



Wide-area blackouts in power grids
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Wide-area blackouts in power grids
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Power grids as graphs

The main high voltage part (above 132

kV) of the UK power grid can be

represented as a graph with 810

vertices and 1194 edges.

If lower voltage nodes were included

the graph would have many thousands

of vertices.
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Functional structure
2 SANCHEZ-GARCIA, FENNELLY, BRODZKI, NIBLO, WRIGHT

Figure 1. DC OPF result on IEEE 24-bus test system

2. Eigenvalues of the laplacian

2.1. The laplacian. This is a matrix LG associated to any undirected simple
graph G (it ignores directions in the graph). There is a weighted version (non-
negative edge weights) and a normalized version (re-scales to avoid vertex-degree
dependence). As any n⇥ n matrix, it can also be viewed as a linear operator or as
a quadratic form on functions on the vertex set of any graph with n vertices.

Definition 1. Let G be an undirected graph with n vertices. The laplacian of G is
the n⇥ n matrix LG = (lij) defined as

lij =

8
><
>:

di if i = j;

�1 if i 6= j and vertices i and j are joined by an edge;

0 otherwise.

Here di represents the degree of vertex i, that is, the number of neighbours.

2.2. The weighted laplacian. This is a version for weighted graphs. By ‘weights’
we will always mean non-negative edge weights: Formally a weight on an undirected
simple graph G = G(V, E) is a function w : V ⇥ V ! R�0 such that

1. w(i, j) = w(j, i) for all i, j (symmetric);
2. w(i, j) = 0 if (i, j) 62 E;
3. w(i, i) =

P
j⇠i w(i, j).

It is crucial that the graph

model captures the functional

and physical structure of the

grid: for example, power flow

through the edges.
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The islanding problem

• Find a way to identify energetically

balanced islands within a power

network (preferably in real time);

• The islands should have a small

overall powerflow through the

boundary

• Understand the effect of removing

a part of the grid on the rest of

the network. This requires the use

of realistic constraints in all

models.
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network (preferably in real time);

• The islands should have a small

overall powerflow through the

boundary

• Understand the effect of removing

a part of the grid on the rest of

the network. This requires the use

of realistic constraints in all

models.

Power in

Power out

Hypothetical 
Island

Rest of grid
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Spectral clustering of power grids

Step 0 (Spectral dimension) Identify gaps in the spectrum of

the Laplacian weighted by the powerflow
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Spectral clustering of power grids

Step 0 (Spectral dimension) Identify gaps in the spectrum of

the Laplacian weighted by the powerflow
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Spectral clustering of power grids

Steps 1, 2 (Normalised Laplacian, Spectral embedding)

Use the first k eigenvectors to provide coordinates to the vertices

in Rk , for k = 2 and 3 to embed in R2 or R3.
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Spectral clustering of power grids

Steps 1, 2 (Normalised Laplacian, Spectral embedding)

Use the first k eigenvectors to provide coordinates to the vertices

in Rk , for k = 2 and 3 to embed in R2 or R3.

Stereographic projection
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Spectral clustering of power grids

Step 3 (Power flows)

Observe that the island with just bus 12 has the smallest boundary

∂(S) = 8.53 but maximal expansion φ(S) = 100%, as its boundary

amounts to all its (electrical) size.
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Spectral clustering of power grids

Step 3 (Power flows)

Alternative power flow in the IEEE 39-bus test system and

clustering into four islands.
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Spectral clustering of power grids

Step 3 (Power flows)
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UK power grid
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Synchronisation



Synchronisation

Synchronisation problems deal with questions regarding aligning a

collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., on) and a group (or collection

of groups) G the objective is to learn a collection of group

elements ρij that would transform object oi to oj .

If it is possible to find a sequence of group elements that allow for

an accurate transformation between objects then this set can be

synchronised.
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Vertex and edge potentials

Let Γ = (V ,E ) be a graph with vertex

set V and edge set E . Let G be a

group.

• A vertex potential is a map

f : V → G .

• An edge potential is a function

ρ : E → G which is symmetric: for

every edge (i , j) ∈ E we have

ρ(j , i) = ρ(i , j)−1

ρ(i, j)

f(i)

f(j)
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Compatible potentials

• We say that a group potential f

and an edge potential ρ are

compatible across an edge (i , j) iff

f (i) = ρ(i , j)f (j).

• We say that the two potentials ν

and ρ are compatible iff they are

compatible across every edge

(i , j) ∈ E .

• It is natural to extend this

definition to the case f : V → M,

where M is a G -module.

ρ(i, j)

f(i)

f(j)
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Synchronisation problem

Bandeira, Singer and Spielman (2013) posed the following

question:

Given an edge potential ρ : E → G , does there exits a vertex

potential f : V → G which is compatible with ρ?

Note that in this formulation the converse problem is easy. Given a

vertex potential f : V → G , one can define a compatible edge

potential ρ by

ρ(i , j) = f (i)f (j)−1.

The problem becomes more complex when we consider functions

f : V → M, for a G -module M.
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Synchronisation along paths

A path γ connecting vertices v and w

is a sequence of edges

γ = (e1, e2, . . . , en)

where for k = 1, . . . , n, ek = (ik , jk),

v = i1, jk = ik+1 and w = jn.
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An edge potential ρ : E → G gives rise to a map

{Paths in Γ} −→ G , R : γ 7→ ρ(e1) . . . ρ(en).

Reversal property

For e = (i , j), let

e−1 = (j , i), and

γ−1 = (e−1n , . . . , e−11 ).

Because the edge potential

ρ is symmetric:

R(γ−1) = ρ(e−1n ) . . . ρ(e−11 )

= ρ(en)−1 . . . ρ(e1)−1 = R(γ)−1.
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An edge potential ρ : E → G gives rise to a map

{Paths in Γ} −→ G , R : γ 7→ ρ(e1) . . . ρ(en).

Concatenation

R(γ1 ◦ γ2) = R(γ1)R(γ2).
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Holonomy groups

Let ω be a based loop at the

vertex v .

Let Ωv be the space of loops

based at v together with the

trivial loop 0 = (v , v); put

R(0) = 1.

Then we have a natural map

from the space Ωv of loops

based at v to G defined by

ω 7→ R(ω) v
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Holonomy

Definition

The group element R(ω) will be called the holonomy of the loop

ω. We say that the holonomy of ω is trivial if and only if

R(ω) = 1, the identity element of G .
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Holonomy group

Lemma

For every vertex v, H(v) = R(Ωv ) is a subgroup of G, called the

holonomy group at v . If the graph G is connected, for every two

vertices v and w, the holonomy groups Ωv and Ωw are isomorphic.
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Restriction to paths

For a path γ connecting a vertex v to a vertex w , let V (γ) be the

set of vertices along γ, and let E (γ) denote the set of edges

comprising γ.

If f : V → G , then fγ is the restriction of f to V (γ). Similarly, ργ

is the restriction of ρ to E (γ).

We say that fγ is compatible with ργ along γ if and only if for

every edge e ∈ E (γ), e = (i , j), fγ(i) = ρ(i , j)fγ(j).

It follows that

fγ(v) = R(γ)fγ(w).
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Synchronisation along loops

Lemma

Let R(ω) = 1 for a based loop ω. Then there exists an edge

potential fω : Vω → G along ω which is compatible with the edge

potential ρω along ω.

Proof.

Let ω = (e1, . . . , en), where i1 = jn = v . We put fω(v) = 1, and

fω(jk) = f (ik+1) = ρ(e1) . . . ρ(ek).

Then for every edge ek = (ik , jk), fω(ik) = ρ(ik , jk)f (jk).

When k = n,

fω(jn) = ρ(e1) . . . ρ(en) = R(ω) = 1

so

fω(jn) = fω(i1) = 1
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Synchronisation and holonomy

Theorem (Gao-B-Mukherjee)

Let G(V ,E ) be a connected graph and let ρ be an edge potential

on G. Then there exists a vertex potential f : V → G compatible

with ρ if and only if the holonomy group H(v) of some vertex v is

trivial. It follows that the holonomy group of every other vertex is

also trivial, as is the holonomy of every loop in G.
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Basic idea

Assume that the holonomy of

every loop is trivial. Choose a

base vertex v and put

f (v) = 1. Then for every

vertex w define

f (w) = R(γ)

where γ is a path connecting v

to w .
v

w
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Basic idea

If γ1 is a different path

connecting v to w , then

ω = γ ◦ γ−11 is a loop based at

v , so that

1 = R(ω) = R(γ)R(γ1)−1

so the construction is

independent of the path.

v

w
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Basic idea

If γ1 is a different path

connecting v to w , then

ω = γ ◦ γ−11 is a loop based at

v , so that

1 = R(ω) = R(γ)R(γ1)−1

so the construction is

independent of the path.

The vertex potential f is

compatible with ρ by

construction.
v

w
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Corollary

Let ρ ∈ P(E ,G ) be an edge

potential for which the

synchronization problem has a

solution, that is, there exists a

vertex potential f ∈ P(V ,G )

compatible with ρ.

Then for every triangle

(u0, u1, u2) in G

ρ(u0, u1)ρ(u1, u2)ρ(u2, u0) = 1. u1

u2

u3
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Cycle consistency

In summary, the triviality of holonomy groups for a symmetric edge

potential implies the following well-known cycle consistency

conditions:

ρ(i , i) = 1 for all i ∈ V ,

ρ(i , j)ρ(j , i) = 1 for all (i , j) ∈ E ,

ρ(i , j)ρ(j , k)ρ(k, i) = 1 if (i , j) , (j , k) , (k, i) ∈ E .
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Fibre bundles and consistency conditions

M
ρ(i, j)

Theorem (Steenrod 1951, §2). If

topological group G acts on Y and

{Ui}, {ρij} is a system of

coordinate transformations in the

space X satisfying the

cycle-consistency conditions then

there exists a fibre bundle B with

base space X , fibre Y , group G ,

and coordinate transforms {ρij}.

In other words we have constructed a bundle with fibre G over

each vertex of the graph. The graph can be regarded as the nerve

of the cover in the above theorem.
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Fibre bundles and consistency conditions

M
ρ(i, j) Non-trivial holonomy over a based

loop in the base graph is represented

as a non-trivial transformation of

the fibre above the base vertex.
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Bundle representation

Theorem (Gao-B-Mukherjee)

Let G be a topological group,

G = (V ,E ) a connected graph, and

ρ : E → G a map satisfying

ρij = ρ−1ji for all (i , j) ∈ E. Write

U = {Ui | 1 ≤ i ≤ |V |} for an open

cover of G in which Ui the open star

of the vertex i
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Bundle representation

Theorem (Gao-B-Mukherjee)

Then ρ defines a flat principal

G-bundle Bρ over G with a system

of local trivializations defined on the

open sets in U with constant bundle

transition functions ρij on

non-empty Ui ∩ Uj . Furthermore, ρ

is synchronizable if and only if Bρ is

a flat principal G-bundle.
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Synchronisation bundle

The fibre bundle Bρ associated with the connected graph G and

edge potential ρ is called a synchronization bundle associated with

the edge potential ρ over G.

Our theorem establishes a one-to-one correspondence between

equivalence classes of synchronisable potentials and flat bundles on

G (up to isomorphism).
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Algorithm: SynCut

Input: G = (V ,E ,w), ρ ∈ C 1 (G;G ), number of partitions K

Output: Partitions {S1, · · · , SK}

1. Solve synchronization problem over G for ρ, obtain

f ∈ C 0 (G;G )

2. Compute dij = exp (−wij ‖fi − ρij fj‖) on all edges (i , j) ∈ E

3. Spectral clustering on weighted graph (V ,E , d) to get

{S1, · · · , Sk}
4. Solve synchronization problem within each partition Sj , “glue

up” the local solutions to obtain f∗ ∈ C 0 (G;G )

5. f ← f∗, repeat from Step 2

Tingran Gao, Jacek Brodzki, Sayan Mukherjee. “The Geometry of Synchronization Problems and Learning Group

Actions.” submitted. arXiv:1610.09051, 2016
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Obstruction to synchronisation



Obstruction to synchronisation

The compatibility condition on edges is

f (i) = ρ(i , j)f (j)

To construct a useful way to measure the failure to satisfy this

condition, we now consider a G -module F (equipped with an inner

product), and F -valued functions f : V → F on the vertex set V .

We want to interpret the difference

f (i)− ρ(i , j)f (j).
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Quantification of obstructions

Let F be a vector space such that G ⊂ GL(F ), and f ∈ C 0 (G;F ).

Failure of synchronisation can be measured by frustration

η (f ) =
1

2

∑

i ,j∈V
‖fi − ρij fj‖2

∑

i∈V
‖fi‖2

,

which can be written as a Raleigh quotient

η (f ) =
〈f , L1f 〉
〈f , f 〉

where L1 is the Graph Connection Laplacian

(L1f )i =
1

deg (i)

∑

j∼i
(fi − ρij fj)
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The standard graph Laplacian

Given a graph G(V ,E ) we define the gradient d : C[V ]→ C[E ] by

the formula

df (i , j) = f (i)− f (j).

The divergence operator δ : C[E ]→ C[V ] is given by

δφ(i) =
∑

j∼i
φ(i , j).

The graph Laplacian is the operator ∆ : C[V ]→ C[V ] defined by

∆ρ = δd :

∆f (i) =
∑

j :j∼i
(f (i)− f (j))
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Twisted differential

M is a G -module equipped with an inner product, and ρ a

symmetric potential as before.

dρ : C(V ,M) −→ C(E ,M)

dρf (i , j) = f (i)− ρ(i , j)f (j)

for every f ∈ C(V ,M).

A solution to the synchronisation problem is an element of the

kernel of dρ.
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kernel of dρ.
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Twisted Laplacian

The usual divergence:

δ : C(E ,M) −→ C(V ,M)

δφ(i) =
∑

j :j∼i
φ(i , j)

together with dρ give a twisted Laplacian

∆ρ = δdρ =
∑

j :j∼i
(f (i)− ρ(i , j)f (j))
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The Raleigh quotient

ηρ (f ) =
〈f ,∆ρf 〉
〈f , f 〉 =

∑

(i ,j)∈E

wij ‖f (i)− ρ(i , j)f (j)‖2

∑

i∈V
di ‖f (i)‖2

ηρ (f ) is defined in Bandeira et al. (2013) as the frustration
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Synchronisation and cohomology

We have defined a simple de Rham-type complex

C : 0 −→ C(V ,M)
dρ−→ Cρ(E ,M) −→ 0.

The cohomology of this complex is

H0(C, d) = ker dρ

in degree zero. In degree one, we have that

H1(C, d) = C(E ,M)/dρ(C(V ,M)).

Thus solutions to the synchronisation problem form the zeroth

cohomology group, which is the same as the kernel of dρ.
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Harmonic forms

Theorem

1. The space of solutions of the synchronisation problem given

by a unitary edge potential ρ is isomorphic to the space of

harmonic functions f , i.e., functions f with the property

∆ρf = 0. Moreover, we have the following orthogonal

decomposition:

C(V ,M) = ker dρ ⊕ Im δ.

2. The Laplace operator ∆ρ is self-adjoint and positive.
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Inner products

The two linear spaces Ω0(G,M) and Ω1
ρ(G,M) are equipped with

inner products naturally induced from the G -invariant inner

product on M:

〈f , g〉 =
∑

i∈V
di 〈fi , gi 〉, ∀f , g ∈ Ω0 (G,M) ,

〈φ, ψ〉 =
∑

(i ,j)∈E

wij〈φij , ψij〉, ∀φ, ψ ∈ Ω1 (G,M) ,
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Formal adjoints

With respect to these inner products, the twisted differential dρ

and the divergence δ are adjoints of each other.
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Learning group actions

Given a group G acting on a set X , simultaneously learn a new

action of G on X and a partition of X into disjoint subsets

X1, · · · ,XK , such that the new action is as close as possible to the

given action and cycle-consistent on each Xi (1 ≤ i ≤ K ).
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Discrete Hodge theory

G = (V ,E ):

Spaces of cochains:

Ω0 (G) := {f : V → K} ,
Ω1 (G) := {ω : E → K | ωij = −ωji ∀i ∼ j} ,

A cochain complex

0 −−→←−− Ω0 (G)
d−−→←−−
δ

Ω1 (G) −−→←−− 0,

where
(df )ij = fi − fj , ∀f ∈ Ω0 (G) ,

(δω)i =
1

deg (i)

∑

j∼i
ωij , ∀ω ∈ Ω1 (G) .
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Discrete Hodge theory

The standard cochain complex

0 −−→←−− Ω0 (G)
d−−→←−−
δ

Ω1 (G) −−→←−− 0,

where
(df )ij = fi − fj , ∀f ∈ Ω0 (G) ,

(δω)i =
1

deg (i)

∑

j∼i
ωij , ∀ω ∈ Ω1 (G) .

The graph Laplacian:

(L0f )i := (δdf )i

=
1

deg (i)

∑

j∼i
(fi − fj) ∀i ∈ V , ∀f ∈ Ω0 (G) .
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Twisted De Rham-Hodge Theory

(L0f )i =
1

deg (i)

∑

j∼i
(fi − fj) , ∀f : V → K

(L1f )i =
1

deg (i)

∑

j∼i
(fi − ρij fj) ∀f : V → F

Näıvely:

(dρf )ij = fi − ρij fj , ∀f ∈ C 0 (G;F )

(δρω)i =
1

deg (i)

∑

j∼i
ωij , ∀ω ∈ C 1 (G;F )

then L1 = δρdρ.
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We have defined:

(dρf )ij ∼ fi − ρij fj , ∀f ∈ C 0 (G;F )

(δρω)i ∼
1

deg (i)

∑

j∼i
ωij , ∀ω ∈ C 1 (G;F )

There is a problem: dρ does not map into C 1 (G;F ) (no

skew-symmetry).

fj − ρji fj = −ρji (fi − ρij fj) 6= − (fi − ρij fj) .

Fix: Interpret fi − ρij fj as the “local expression” of (dρf )ij in a

local trivialization over U = {Ui | 1 ≤ i ≤ |V |} of the associated

F -bundle of Bρ, denoted as Bρ [F ], such that the extra ρji factor

encodes a bundle transformation from Ui to Uj .
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Twisted de Rham-Hodge Theory

• Combinatorial Hodge Theory:

0 −−→←−− Ω0 (G)
d−−→←−−
δ

Ω1 (G) −−→←−− 0,

• Twisted Combinatorial Hodge Theory:

0 −−→←−− C 0 (G;F )
dρ−−→←−−
δρ

Ω1 (G; Bρ [F ]) −−→←−− 0.

104



Twisted de Rham-Hodge Theory

Theorem (Gao, B, Mukherjee (2016)))

Define

∆(0)
ρ := δρdρ, ∆(1)

ρ := dρδρ

then the following Hodge-type decomposition holds:

C 0 (G;F ) = ker ∆(0)
ρ ⊕ Im δρ = ker dρ ⊕ Im δρ,

Ω1 (G; Bρ [F ]) = Im dρ ⊕ ker ∆(1)
ρ = Im dρ ⊕ ker δρ.

Solutions to the synchronisation problem are elements of ker dρ.
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Learning group actions

Given a group G acting on a set X , simultaneously learn a new

action of G on X and a partition of X into disjoint subsets

X1, · · · ,XK , such that

• the new action is as close as possible to the given action;

• and is cycle-consistent on each Xi (1 ≤ i ≤ K ).
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Example: Representations

If the set X is a vector space and we seek a direct sum

decomposition X =
⊕K

i=1 Xi , the LGA problem reduces to the

search for all irreducible G -subrepresentations of X .

107



Example: Spins

X = {x1, · · · , xn} equipped with

S : X → {±1}.
Let G = {±1} act on X transitively as

(gji , xi ) 7→ xj , gji = S(xj)S(xi ).
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Example: Spins

Suppose the spin of each point in X

(i.e. the label map S) is unknown, but

we know the group actions {gij}
Then we can reconstruct S — by

spectral clustering the dataset X ,

viewed as vertices of a complete graph

G with weight wij = gij on the edge

connecting xi and xj .
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Example: Spins
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Lemurs

If we restrict attention to the determinant of the transformation

providing the best fit then we discover that teeth 1, 2, 7, 8 belong

to one cluster (right), while 3, 4, 5, 6 belong to the other cluster

(left).
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Identifying primate genera
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Classification into folivorous, frugivorous, and insectivorous
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Extensions: defects in crystals
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Extensions: defects in crystals

The local structure of the defects is

encoded in a comparison map

φ : R2 → R2 which compares an ideal

crystal to one with defects.

Note that φ is only determined up to

action of point groups which determine

symmetries of the crystal.

The geometry of a planar crystal is

determined by a a two-dimensional de

Rham complex.
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The shape of lungs in COPD



Rerefence

The shape of lungs in chronic obstructive pulmonary disease, 2017

F. Belchi Guillamon, M. Pirashvili, M. Bennett, J. Conway,

R. Djukanović, J. Brodzki

Scientific Reports, 28 March 2018, supported by the EPSRC

Joining the Dots programme
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COPD

• Chronic obstructive pulmonary disease (COPD) is a common

progressive disease, affecting more than 200 million individuals

worldwide and is the third leading cause of death.

• It is characterized by chronic inflammation of the bronchi and

the lung parenchyma, resulting in varying degrees of

obstructive bronchitis and emphysema

• Although its pathology is heterogeneous, in functional terms,

all forms of COPD result in loss of lung function

• Cigarette smoking is the main COPD risk factor, but it is

quite frequent among people who never smoked, and many

smokers do not develop COPD.

• Many adults who develop COPD have low lung function in

the early life.
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CT scans
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Related work: Arterial trees in the brain

Figure 1: Tree of arteries from the brain of one person, showing one data object. Thickest arteries appear near
the bottom. Arteries bend, twist, and branch through three dimensions, which results in meaningful aspects
of the data being captured by persistent homology representations. The resolution is 0.5 ⇥ 0.5 ⇥ 0.8 mm3.

2 Brain artery trees

Each data point in this study is a geometric construct that represents the tree of arteries in the brain
of one person. More precisely, the data result from a tube-tracking vessel segmentation algorithm
that was applied to 3-dimensional Magnetic Resonance Angiography (MRA) images followed by a
combination of automatic and manual assembly into trees. Aylward and Bullitt (2002) and Aydin,
et al. (2009) describe this process. A visual rendering of one such reconstructed tree is shown in
Figure 1. The full data set consists of n = 98 such trees, with subject ages from 18 to 72. While the
long-term goal of study is to develop methods for exploring stroke tendency, and perhaps to develop
diagnostics for brain cancer based on vasculature, pathological cases were deliberately excluded before
MRA scanning, the purpose being to understand variation in the population of non-pathological cases.
The central goal of this study is to characterize correlations between these brain diagnostics and the
two covariates, age and sex.

2.1 Earlier analyses

Bullitt, et al. (2005) studied simple summaries of each data tree, such as overall branch length and
average branch thickness. These were both seen to be significantly correlated with age. Their approach
can be refined through better use of the large amount of additional information available in this rich
data set, such as the tree topologies, and also the multiple individual branch locations, structures,
widths, and so on. Early approaches to this, such as Wang and Marron (2007) or Aydin, et al. (2009)
chose to focus solely on the combinatorics of the branching structure, ignoring other aspects such
as thickness or the geometry of the 3-dimensional embedding. The latter paper found statistically
significant age e↵ects. These age e↵ects were studied more deeply using the notion of tree smoothing
developed by Wang, et al. (2012).

Shen, et al. (2014) approach this data set using representations of planar binary trees via Dyck
paths, which arise in branching processes (Harris 1952). The bijection represents each planar binary
tree as a function of one real variable, allowing application of standard asymptotic methods when
trees are viewed as random objects. Adaption to the brain artery tree dataset had the goal of making
available the large array of methods available for Functional Data Analysis (FDA), where the data
objects are curves such as graphs of univariate functions; see Ramsay and Silverman (2002) and
Ramsay (2006). Dyck path analysis of the brain tree data found more significant correlation with age
as well as the first indication of a significant sex e↵ect.

2

smallest " such that Y ✓ Y0
" and Y0 ✓ Y". The stability results referred to above imply that

Wp

�
Dgm1(Y), Dgm1(Y0)

�
 K · dH(Y, Y0). A powerful consequence of this result arises when Y0

is a small but dense sub-sampling of Y: stability ensures that the persistence diagram Dgm1(Y) can
be well approximated by the diagram derived from the sub-sample, a fact we apply in our analysis of
brain artery trees.

4.3 From trees to diagrams

The trees under study here can be downloaded from
https://gitlab.com/alexpieloch/PersistentHomologyAnalysisOfBrainArteryTrees.
More precisely, each tree is represented as a MATLAB .mat file that gives the (x, y, z)-coordinates

of each vertex and the adjacency matrix. The files contain other data, such as branch thickness, but
that additional information is not used in our topological analysis. Pipelines for running all of the
analyses on the persistence diagrams can be found at the same link.

For persistence via connected components, our function h on each tree T is height: the value
h(v) at each vertex v = (x, y, z) is its third coordinate z, and on each edge (u, v) the value is
h(u, v) = max{h(u), h(v)}. We computed Dgm0(h) as in Section 4.1, with a simple and fast union-find
algorithm, running in O(N log N)—a few seconds per tree—where N is the number of vertices of T .

The running time for one-dimensional persistence is much slower, so we did not compute the
full-resolution persistence diagrams Dgm1(T ) associated to the thickening of each tree T within the
brain. Instead, we sub-sampled each tree branch to produce a set of 3000 total vertices per tree; each
diagram then took a bit less than a minute to compute. In contrast, each tree in the original dataset
has on the order of 105 vertices, spread among roughly 200–300 tree branches. The stability theorem
for persistent homology provides theoretical guarantees for our sub-sampling procedure.

Figure 10 shows the results of this analysis on the brain tree of a 24-year old subject: from left
to right are the brain tree, the 0-dimensional diagram, and the 1-dimensional diagram. Compare this
to Figure 11, which shows a 68-year old subject. Some qualitative di↵erences might be noticed from
these two diagrams, but to give them any quantitative backing requires actual statistical analysis of
the diagram population, which we describe in the next section.

(a) Brain tree (b) Dgm0 (c) Dgm1

Figure 10: Persistent homology data objects from a 24-year old. Left: brain tree. Middle: zero-dimensional
diagram. Right: one-dimensional diagram.

5 Detailed analysis of brain artery data

The methods in prior sections generate persistence diagrams to summarize brain artery trees. From
there, statistical analysis can proceed either with further summarization or without. As the analysis
in Section 3 shows, vector-based summaries can capture substantial structure while maintaining the
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(a) Brain tree (b) Dgm0 (c) Dgm1

Figure 11: Persistent homology data objects from a 68-year old. Left: brain tree. Middle: zero-dimensional
diagram. Right: one-dimensional diagram.

possibility to apply the full range of standard statistical analyses. This section describes our approach
in more detail and then examines the e↵ect of changes in feature selection.

Our admittedly ad hoc method to turn diagrams into feature vectors is justified somewhat by the
nature of the geometry it is intended to capture, but also by the excellent age and sex e↵ects it reveals.
Other approaches to the same problem include analyzing the diagram as an image, as in Bendich,
et al. (2014), or basing features on more sophisticated algebraic geometry, as advocated in Adcock,
Carlsson, and Carlsson (2013).

We settled on vector-based analyses as a middle ground. In general, simple numerical summaries,
such as total persistence or total number of dots, miss too much useful information to be potent. At
the opposite extreme, it is possible to work directly with populations of persistence diagrams, basing
the analysis on metrics such as the Wasserstein metric Wp in Section 4.1.3. For example, Gamble
and Heo (2010) found interesting structure using multidimensional scaling with a Wp-dissimilarity
matrix computed from a set of persistence diagrams, each one associated with a set of landmarks on
a single tooth. One could go further, using methods such as the Fréchet mean approach of Mileyko,
Mukherhee, and Harer (2011) or Munch, et al. (2015) to find the center of the data followed by
multidimensional scaling to analyze variation about the mean. We opted not to go that route because
computation of the Wp-metric is generally expensive.

Two other possiblities, which we have not yet investigated, would be to use Bubenik’s theory of
persistence landscapes (Bubenik (2015)) to translate the problem into one of functional data analysis,
or to experiment with recently developed kernel methods for persistence diagrams by Reininghaus, et
al. (2015).

Initial approach. For each of the n = 98 zero-dimensional persistence diagrams, we computed the
persistence of each dot; recall a dot has coordinates (b, d), where b is birth and d is death, and that
its persistence is d � b. We then sorted these persistences in descending order and picked the first
100 to produce a vector (p1, p2, . . . , p100) for each brain. In other words, the i-th coordinate of this
vector represents the size of the i-th largest “bend” in the brain, as measured in the vertical direction.
The same procedure on the one-dimensional diagrams led to the vector (q1, q2, . . . , q100), in which the
number qj represents the size of the j-th most persistent loop in the brain. Both sets of vectors were
used in the age and sex analyses in Section 3.

Feature scale. Are the observed age correlations being driven more by the high-persistence features
or by the lower-scale ones? In addition, does restricting to the 100 most persistent dots miss useful
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The geometry of the lung

Pictures from Smith et al., Human airway branch variation and chronic

obstructive pulmonary disease, PNAS 2018
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Example
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Comparing persistence diagrams: the bottleneck distance

Definition

Let X and Y be finite multisets, whose underlying sets are subsets

of a metric space Z . Assume that X and Y are of equal size as

multisets.

The bottleneck distance between X and Y is defined by

dB(X ,Y ) = inf
γ

sup
x∈X

d(x , γ(x))

where γ ranges over all bijections of multisets γ : X → Y .

We consider each point of multiplicity k as k points, and γ is a

bijection between the resulting sets.
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The bottleneck distance

White and black dots belong to persistence diagrams of two

different functions. The squares represent a bijection realising the

bottleneck distance, which equals half the side length.
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Comparing persistence diagrams: the Wasserstein metric

Let X ,Y be subsets of R2 (multisets in general).

Let γ : X → Y be a bijection. For p ≥ 1 the cost of γ is defined by

Cp(γ) =


 ∑

x∈D(f )

‖ x − γ(x) ‖p



1/p

Definition

Wp(X ,Y ) = inf
γ
Cp(γ)

where the infimum is taken over all bijections γ : X → Y .
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Topological characteristics of lungs

• The overall aim of this study was to develop a set of new

radiomic features that can distinguish between healthy

non-smokers as well as healthy smokers and patients with

COPD.

• The following four study participant groups defined by
smoking status and spirometry given by the GOLD guidelines
were studied:

• healthy non-smokers and healthy smokers (both judged as

healthy by spirometry showing FEV1 > 80% of predicted and

FEV1/FVC > 0.75),

• mild COPD patients, consisting of GOLD stage 1 (with FEV1

≥ 80% of predicted and FEV1/ FVC < 0.70)

• moderate COPD patients, consisting of GOLD stage 2 (50% ≤
FEV1 < 80% of predicted and FEV1/FVC < 0.70).
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Topological characteristics of lungs
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Topological characteristics of lungs
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Topological characteristics of lungs

Directional complexity: the sum of the lengths of the bars in the

graph (total life span of the persistence diagram).
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Topological characteristics of lungs

Directional complexity distinguishes healthy subjects from Mild and

Moderate COPD
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Comparison to other standard measurements
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Comparison to other standard measurements
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H1 and the shape of the lung
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H1 and the shape of the lung
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H1 and the shape of the lung

Numerical invariant: total barcode length in the H1 barcode.
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H1 and the shape of the lung

Metric space structure created using the Wasserstein metric and

represented through 2-dim MDS projection 130



H2 and the spatial structure
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H2 and the spatial structure
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H2 and the spatial structure
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H2 and the spatial structure

Metric space structure created using the Wasserstein metric;

represented here in a 2-dim MDS projection
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Geometry and persitence
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Questions

• Persistence for fibre bundles: a combination of geometric and

topological information

• Synchronisation through persistence

• Symmetry detection

• Time evolution: geometric intuition to guide the evolution of

persistent homology

• Phase transitions in persistence diagrams
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The same equations have the same solutions.

Richard Feynman
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