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Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ...,0,) and a group (or collection
of groups) G the objective is to learn a collection of group elements
pij that would transform object o; to o; in a consistent way.



Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ...,0,) and a group (or collection
of groups) G the objective is to learn a collection of group elements
pij that would transform object o; to o; in a consistent way.

We'd like to get as close as possible to a group action, so if
pij : 0i — oj and pji : oj > ok then

Pik = Pij © Pjk - Oi > Ok.



Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ...,0,) and a group (or collection
of groups) G the objective is to learn a collection of group elements
pij that would transform object o; to o; in a consistent way.

We'd like to get as close as possible to a group action, so if
pij : 0i — oj and pji : oj > ok then

Pik = Pij © Pjk - Oi > Ok.

If it is possible to find a sequence of group elements that allow for
an accurate transformation between objects then this set can be
synchronised.



Examples of synchronisation

e Orientability of manifolds [Singer, Wu (2011)]: G = O(1);

e Angular synchronisation [Singer (2011)]: G = U(1);

e Vector diffusion maps [Singer, Wu (2012)]: G = O(d);

e Collection Shape Matching [Nguyen et al. (2011)], [Huang,
Guibas (2013)], [Chen et al. (2014)], [Maron et al. (2016)]:
G = E¢;

e Cryo-EM Structural Reconstruction [Singer et al. (2011)],
[Shkolnisky, Singer (2012)], [Zhao, Singer (2014)], [Bandeira
et al. (2015)]: G = SO(3)



Differentiable manifolds

A differentiable manifold M is a topological space equipped with
an atlas {U,} which is an open cover of M such that for every o

there is a homeomorphism
G Uy — R"

which are such that for every nonempty overlap U, N Ug the

transition map

8op = ba 095" dp(Ua U Ug) = ¢a(Ua U Up)

is a diffeomorphism of open subsets of R”.



Orientable manifolds

A manifold is orientable iff it admits an oriented atlas, i.e., an atlas
{U.} such that all the transition maps g,z are orientable.

This in turn means that the Jacobian of each such map has an
everywhere positive determinant.

Question:

How can one determine if a given manifold is orientable starting
from a sample of points of M?



Orientable diffusion maps, Singer and Wu 2011

Assume given points S = {x1,x2, ..., x,} sampled from some RP;
we assume that these points lie on a submanifold M of RP.

What is a good notion of tangent space in this case?



Principal Component Analysis PCA

e PCA was invented by Karl Pearson in 1901
e It provides a way of reducing the dimension of data, which is

particularly useful when trying to visualise data in two or three
dimensions.




Local PCA

Choose x; € S and identify its K nearest neighbours, where
K << n. These points Xj, ..., X, are located near the tangent
space T,.M. There may of course be deviations due to noise or

curvature of M.
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Choose x; € S and identify its K nearest neighbours, where

K << n. These points Xj, ..., X,

space T,,M. There may of course be deviations due to noise or

are located near the tangent

curvature of M.




Local PCA

Let i be the average of the nearest neighbours of x;:

1 K
-
k=1
and form the matrix of vectors
Xi=xy—p xp—p .. X —p.

So the k-th column is the vector x; — ;v and the matrix is of size

px K.



Local PCA

X,':[X,'l—u Xy — U X,'K—u].
Assume that the dimension of M from which the points x; are
sampled is d.

If the nearest points x;, to x; are elements of T,, M (more precisely:
the vectors x; — x; are elements of T,, M) then the matrix X will
have d linearly independent columns, i.e., its rank is d.

This can be detected through the singular values of X;.
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Singular Value Decomposition

Assume A is a rectangular m x n matrix; A € C™*" with m > n.

A singular value decomposition of A is

A= U<Z> v
0
01

Y = ; 0'120'22"'>0'n205

where

On

and U € C™™ and V € C"*" are unitary. The numbers o are

called singular values.

The matrix U is a left singular vector matrix, and V is the right
singular vector matrix.
11



Singular Value Decomposition

e A m x n matrix has min{m, n} singular values.

12



Singular Value Decomposition

e A m x n matrix has min{m, n} singular values.
e The singular values are unique, but the singular vector
matrices are not.

12



Singular Value Decomposition

e A m x n matrix has min{m, n} singular values.
e The singular values are unique, but the singular vector
matrices are not.

o IfA=U g V* is an SVD decomposition of A then

A= V(Z 0)U*

is a SVD of A*. So A and A* have the same singular values.

12



Singular Value Decomposition

e A m x n matrix has min{m, n} singular values.
e The singular values are unique, but the singular vector
matrices are not.

o IfA=U (g) V* is an SVD decomposition of A then

A= V(Z 0)U*

is a SVD of A*. So A and A* have the same singular values.
e A is nonsingular iff all its singular values are nonzero.

12



Singular Value Decomposition

e A m x n matrix has min{m, n} singular values.
e The singular values are unique, but the singular vector
matrices are not.

o IfA=U g V* is an SVD decomposition of A then

A= V(Z 0)U*

is a SVD of A*. So A and A* have the same singular values.
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Singular Value Decomposition

e A m x n matrix has min{m, n} singular values.
e The singular values are unique, but the singular vector
matrices are not.

o IfA=U g V* is an SVD decomposition of A then

A= V(Z 0)U*

is a SVD of A*. So A and A* have the same singular values.

e A is nonsingular iff all its singular values are nonzero.

e The rank of a matrix is the number of its nonzero singular
values.

e Vectors of U corresponding to the nonzero singular values
span the column space of A (the image of A regarded as a

linear operator).
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SVD example

~N O W o

o O BN

g

—0.1525
—0.3499
—0.5474
—0.7448

14.2691
0
0
0

—0.6414
—0.7672

—0.8226
—0.4214
—0.0201

0.3812

0
0.6268
0
0

0.7672
—0.6414

)

—0.3945
0.2428
0.6979

—0.5462

—0.3800
0.8007
—0.4614
0.0407
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Estimating the dimension

The number of nonzero singular values o; , of X; can be taken to
be the dimension of T,.(M). This however, is not quite accurate
because of noise and curvature of M.
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because of noise and curvature of M.
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We estimate the dimension d; of T,,M as the smallest integer d;
d; 2
Zk:l Oik

K
> k=1 giz,k

The intuition here is that we want to consider the singular values

for which

>

that account for a high enough percentage of the variability of the
data.

14



Estimating the dimension

The number of nonzero singular values o; , of X; can be taken to
be the dimension of T,.(M). This however, is not quite accurate
because of noise and curvature of M.

Choose a threshold v € [0,1]. In practice 7 is closer to 1 than 0.

We estimate the dimension d; of T,,M as the smallest integer d;
for which
d; 2
Zk:l Oik
K 2
> k=1 Ok

The intuition here is that we want to consider the singular values

>

that account for a high enough percentage of the variability of the
data.

E.g., if ¥ = 0.9 then d; singular values account for at least 90% of
the variability of the data, but d; — 1 singular values will account

for less than 90%. 14



Estimating the dimension

Having estimated the local dimension d; for all i =1,...,n we
need an estimate of the global dimension. Possible options are:

The mean
1 n
d=- Z; d;
1=

rounding to the nearest integer. This minimises the sum of squared

errors
n

> (di—d)*.

i=1

ii5)



Estimating the dimension

Having estimated the local dimension d; for all i =1,...,n we
need an estimate of the global dimension. Possible options are:

The median
d = median (d1, da, ..., dp).

This minimises the ¢1-error

n

> |di —d|.

i=1

This is more robust with respect to outliers than the mean

estimator.

ii5)



Local coordinate frame

Consider again the matrix describing the shifted local
neighbourhood of x;:

Xi=[xy—p xXp—p ... X —p.
Assume that the matrix X; has an SVD decomposition

X; = Uiz V¥,

where the columns of the p x K matrix U; (the left singular
vectors) are orthonormal.

16



Local coordinate frame

Define the matrix O; by
O,' = [u,-lu,-z . U,'d]

where the column vectors uj; are the first d left singular vectors of
the matrix X; (arranged in the decreasing order of the singular
values)

The columns of O; provide an approximation of an orthonormal

basis of the tangent space T,,(M).

17




Now consider two nearby points x; and x; which which are each
other’s nearest neighbours. We have identified their local frames,
can we map one to the other?

18



We have found matrices O; and O; approximating the tangent
spaces at each point. Because of possible noise or curvature
effects, the matrix O,-TOJ- need not be orthogonal, and we define

Ojj to be an orthogonal matrix which is closest to O,-TOJ-:
: T
Ojj = argmin ||O — O; Oj||

where the minimum is taken over all orthogonal matrices

0 € 0(d).
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We have found matrices O; and O; approximating the tangent
spaces at each point. Because of possible noise or curvature
effects, the matrix O,-TOJ- need not be orthogonal, and we define
Ojj to be an orthogonal matrix which is closest to O,-TOJ-:

Ojj = argmin ||O — O,TOj||

where the minimum is taken over all orthogonal matrices

O € 0(d).
This has the following solution.
If the SVD of O] O; is
o0, =UxvT

then

O; = UVT.
19



The process of finding optimal orthogonal transformations between
bases is called alignment.

Given that O € O(d), we have that det O = £1 where

e det O; = 1iff O; € SO(d), so it is a ‘rotation’

e det O; = —1iff Oj is a composition of a rotation and a
reflection.

20



The process of finding optimal orthogonal transformations between

bases is called alignment.

Given that O € O(d), we have that det O = £1 where

e det O; = 1iff O; € SO(d), so it is a ‘rotation’
e det O; = —1iff Oj is a composition of a rotation and a

reflection.

Note that this only works between nearby points, and the outcome
can be encoded as a graph G = (V/, E) with vertices corresponding
to the n data points, and where an edge (/, /) exists iff there is a
corresponding matrix Oj;.

20



Synchronisation

We can encode the results of our investigation so far by defining a
matrix
det O;, if(i,j) € E

0, otherwise

For each point x; we have a basis defined by local PCA as well as a
basis given by the ambient manifold.

Define:
1, if the orientations agree
A =
—1, otherwise.
Clearly,
=il
Z,'Zj = Z,J

21



Synchronisation

In practice, because of the curvature and noise, the relation

will not necessarily hold for all edges.

Synchronisation in this case refers to finding the function z on the
vertices (z takes values in Zjy) for which this equation holds. When
the manifold is orientable, this solution exists, while for
nonorientable manifolds we will find two classes of frames
connected by matrices of determinant 1.

22



Angular synchronisation

Problem
Find an accurate estimation of a set of unknown angles 61, ..., 0,
from m noisy measurements of the differences 6; — 0;.

A main motivation for this problem comes from systems of coupled
oscillators. This is relevant, e.g., in power grids where generators

on the network need to be synchronised very precisely.

23



Angular synchronisation

Other applications include

e Time synchronisation of distributed networks given the
differences t; — t; from which we need to determine the times
t1,...,th € R,

e Surface reconstruction in computer vision and optics, where
the surface is reconstructed from noisy measurements of the

gradient of the surface.

24



Angular synchronisation

Main problem: given the set of differences 6; — 6; (call them
offsets), we do not know which of them are reliable, and which are

noise.

So there are two kinds of edges in the synchronisation graph G:

8 =0; — 0 (7,J) € Egood
djj ~ Uniform([0,27)) (/,J) € Ebad-
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Angular synchronisation

Main problem: given the set of differences 6; — 6; (call them
offsets), we do not know which of them are reliable, and which are

noise.
So there are two kinds of edges in the synchronisation graph G:

8 =0; — 0 (7,J) € Egood
djj ~ Uniform([0,27)) (/,J) € Ebad-

We note that cycles in the graph G satisfy the following
consistency relation. For a triangle of ‘good’ edges (i,)), (j, k),

and (k, i) we have
5ij+5jk+5ki =X() mod 27.

This will be quite important in later lectures.

25



Measuring similarity through orthogonal transformations

The following new framework emerges from our examples:
e Similarity between data points is described by a graph of
relationships G;

e If two points are similar enough, they are connected by and
edge with a weight that quantifies their affinity.

e Many examples show that apart from a weight, it may be
useful to have an orthogonal transformation attached to an
edge.

26



Image classification

To each pair we would like to assign an orthogonal transformation
Ojj that best aligns the images and a weight wj; describing their

measure of affinity.
27



Vector diffusion maps (Singer, Wu 2012)

Given a graph G = (V/, E) of relationships define

0 otherwise

5 {Wijo,-j, (i.j) € E

where O;; € O(d), 0 € O(d). We assume wj; = wj; and Oj; = OUT

28



Vector diffusion maps (Singer, Wu 2012)

Given a graph G = (V/, E) of relationships define

w;Oy, (i,j) € E

0 otherwise

Si,j:

where O € O(d), 0 € O(d). We assume wj; = wj; and Oj;; = O}

As previously, we assume that we have identified tangent spaces at
data points in V' and want to create a suitable ‘parallel transport’
operator to compare the tangent spaces at nearby points. These
are called diffusion maps.

28



Diffusion maps

Vertex degree:

deg(r) Z Wij.

Jroi
D(Iv i) = deg(i)ldxd-

Now for x; € V consider a vector v(i) € RY regarded as an
element of RY.

‘Divergence’

(D1Sv)(i deg ZWUOUV

29



Affinity

To encode affinity between vertices i and j (we will frequently
simplify the notation x; and x; for vertices) consider a path ~ of
length t connecting / and j, e.g., a sequence of consecutive edges
of length t, and take

O(7) = Oi=ip, Oiiy - - - Oi_y ir=j

This orthogonal transformation will a priori depend on the path -,

and we will return to this point later.

A main point of the VDM approach is the characterisation of the
size of this orthogonal transformation.

30



Affinity estimation

Recall that we have defined a d x d matrix

w;iOj, (i,j) € E

ij = )
0 otherwise

where O;; € O(d), 0 € O(d).

Affinity is a measure of compatibility between transformations
obtained by following different paths from i/ to j.

This is measured using the matrix
§ _ D71/25D1/2
which is similar to the matrix D~1S introduced earlier.

31



Affinity

The affinity between vertices i and j is defined as follows. For a

natural number t consider all paths from / to j of length 2t, and
put:

Acli,j) = 1S% (0. )lIss
where || — || is the Hilbert-Schmidt norm of this matrix:

1/2

ITllus = | D173
i

32



Affinity

The matrix S is symmetric, so it has a complete set of eigenvectors

Vi,...,Vpq and eigenvalues A1, ..., Ang.

Then
nd
J)= Z)\/v/(i)v/(j)T; S%(ij) Z)\2tv/ Nvi(y
=1

where v(i) € RY,

33



Affinity

152G DiEis = Tr(S*(i,)S*(i,4) )

nd
= Z ()\/)\r)2t<V/(i), Vr(i)><Vl(j)7 Vr(./)>

l,r=1

= <Vt(i)7 Vt(j)>

where
Viii— (/\/)\r)2t<Vl(i)a Vr(i)>

and I,r=1,...,nd.

34



Cryoelectron microscopy

aaaaa

][] : W
Molecule ¢ w/;&e 50(3) e

Il ©C0 00 QO
e ©0 030 0

Picture from Picture from Singer, Shkolnitsky via Baideira Ten
lectures and forty two problems . ..
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Cryoelectron microscopy

The pixel intensity of the projection is described as

o0
Pi(X7y):/ gf),‘(X,y,Z)dZ
—00
where z is the direction of the imaging electrons. Here ¢; is
defined as follows.

Let ¢(x, y, z) be the electric potential of the ‘laboratory molecule’,
then

6i(x,y,2) = ¢(R ' (x, v, 2)),

where R; is the SO(3) matrix moving the laboratory molecule to
its position when it is X-rayed.

Problem: Find the rotation matrices R;.

36



Cryoelectron microscopy

Note that for two molecules i and j the element of SO(3) given by
plij) = RiR*

represents a measure of similarity between two projections.

A different version of the same question: can we work out the
necessary group actions p(1f,j)?

37



Shape transport

Microcebus (Mc) Lepilemur(Lp) Propagation
Observer-Placed Landmarks L

Mc

|

Lp

*Red circle is Lemur (Lm) l
around Entoconid Lp

Picture from Sayan Muhkerjee
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Object alignment

Picture from Sayan Muhkerjee
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Data Acquisition: microCT (High Resolution X-ray CT)

Surface reconstructed from pCT-scanned voxel data
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Landmarked Teeth —

k
. 1
dI%rocrustes (51752) = min ;Z HR(XJ) _yj“2
=1

R rigid motion

Cheirogaleus

Prolemur Canlius

Cheirogaleidae

Scandentia

Boyer et al. " Algorithms to Automatically Quantify the Geometric Similarity of Anatomical

Surfaces.” Proceedings of the National Academy of Sciences 108.45 (2011): 18221-18226.

41



Myriads of Shape Distances...

dewn (51, 52):  Conformal Wasserstein Distance (CWD)
dep (51, 52):  Continuous Procrustes Distance (CPD)
dekp (S1,52):  Continuous Kantorovich-Procrustes Distance (CKPD)
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Shape Space

diy -
foe
~
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r/ft

|
\
|
|
-\_\‘
N
o
/ -
/ -~
-
-
e
-

i . e

The comparisons are mostly local and work best over small
distances.
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Geometry of synchronisation







Classifying objects







Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., 0,) and a group (or collection
of groups) G the objective is to learn a collection of group
elements pj; that would transform object o; to o;.
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Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., 0,) and a group (or collection
of groups) G the objective is to learn a collection of group
elements pj; that would transform object o; to o;.

If it is possible to find a sequence of group elements that allow for
an accurate transformation between objects then this set can be

synchronised.
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Synchronization problem with noise

yi = Rix+¢&;
R; € O(d), & ~i.i.d. noise

Afonso S. Bandeira. “Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science.” (2015). 47



Spectral properties of graphs




Basics of graph theory

e Assume given a graph G, with a set of vertices V and a set of
edges E. For simplicity we assume that G has no loops or
multiple edges. (This assumption can be removed.) For a
vertex v we denote its degree (or valency) by d,: this is the
number of edges that meet at v.

e |s it possible to measure the level of complexity of the graph?

e For example, how well connected is the graph? Does it have
bottlenecks? How easy is it to disconnect it into components?

48



Basics of graph theory

The topological structure of the graph does not capture the
functional information about the system it describes. To include
this information, we use edge weights. A typical example of an
edge weight is a function w: V x V — RZ0 such that

2. w(i,j)=0if(i,j) ¢ E;
3. w(i i)=Y w(ij).

In what follows, we will use more general weights that will be

w w(j, i) for all i, J;
w

allowed to take values in groups, modules over groups, etc.

49



The discrete Laplacian

The discrete Laplace operator is defined on the space of functions

g : V — C on the set of vertices V.

where v ~ u means that the two vertices are adjacent.
The Laplacian is the composition of two operations:
e ‘gradient’ (or derivative): d : C(V) — C(E),
df (u,v) = f(v) — f(u), where u, v are ends of one edge;
e ‘divergence: 9: C(E) — C(V);

0d(u) =Y d(u,v).

50



The discrete Laplacian

Since the graph is finite, C(V) = Rnumber of vertices
C(E) = [Rnumber of edges ' 5nd the operators d, 0, A are given by
matrices of a suitable size.
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The discrete Laplacian

Since the graph is finite, C(V) = Rnumber of vertices
C(E) = [Rnumber of edges ' 5nd the operators d, 0, A are given by
matrices of a suitable size.

The Laplacian matrix of G is the N x N matrix L defined as

d; if i =J;
[Lg =1 —wy, ifi#jand (i,)) € E;
0, otherwise.

It is a real symmetric matrix with non-positive entries outside the
diagonal, and the sum of each column (or row) is zero.
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Normalized Laplacian

The normalized Laplacian is the matrix L, = D~/21.D~1/2 where
D is the diagonal matrix with nonzero entries

di =Y w(i,j).

in~j

52



Normalized Laplacian

The normalized Laplacian is the matrix L, = D~/21.D~1/2 where
D is the diagonal matrix with nonzero entries

di =Y w(i,j).

i~j
That is,
1, ifi=j;
[Laly = § Vg 174 and (i) € £
0, otherwise.

The normalized Laplacian is scale-independent, and it is more
advantageous for clustering purposes.
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Some properties of the Laplacian

1. When the graph G is connected, the kernel of the Laplacian
consists of constant functions. So while A is not invertible, it

fails to be invertible on a one-dimensional space.

2. The operator A is positive, so it has real, nonnegative
eigenvalues 0 = \g < A1 < -+ < A1,

3. The first non-zero eigenvalue \p is particularly interesting. It
can measure ‘the growth' of the graph; an example of this is
the edge expansion.
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Isoperimetric problems

e A classical problem in graph theory: Remove as few edges as
possible to separate the graph into two parts of almost equal

size.

e There are many problems of this general type: Remove as
little of the graph as possible to separate out a subset of
vertices of some desired ‘size’. (These are called ‘separator
problems’.)

e An edge-cut is a subset of a set of edges which disconnects
the graph.

e Cheeger constants appear in isoperimetric problems involving
edge-cuts. They are also important in flow or routing
problems on graphs.

54



The edge expansion of a graph

Let S be a subset of the vertex set
of G. The edge boundary 95 of S
consists of all edges with exactly
one end in S. This is the same as
0S, where S = G \S.

What is the typical size of the
boundary 957 This information
indicates the level of connectedness
of the graph.

55



Edge expansion

The volume of a subgraph spanned by a subset S C V is:
VO|(5) = Z d,' = Z Wiji.
ics ics
The boundary of S is the sum of the weights of the edges between
vertices in S and vertices not in S:

aS)= > wy
icS jgs
The edge expansion of S as the quotient

9(5)

(5) = vol(S)’

56






Spectral clustering

We will be interested in the question of clustering on graphs, that
is, a partition of the set of vertices V

For this, the edge expansion is a useful indicator of quality:

a(S)
vol(S)’

¢(S) =

#(S) is small if the vertices of S are more connected among
themselves than they are to the complement of S.
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Edge expansion

58




The Cheeger constant
[ oS]
hG = min {VOIS

For graphs with bottlenecks,
the Cheeger constant will be
small, close to zero.

Graphs with well connected
components will have a larger
Cheeger constant.

Here |0S| = 2 so
|0S|/ vol S — 0 as the size of
S grows.
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Cheeger inequality

We have the isoperimetric inequality

)\1/2 < hg < v/2\1.
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Applications of spectral clustering




Wide-area blackouts in power grids

=

8@@ _f

16 05:57 EDT

16:10:37 EDT
Source: US/Canada PDMCE 16:10:39 EDT
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Wide-area blackouts in power grids

16:10:44 EDT

16:10:45 EDT 16:13:00 EDT
Source: US/Canada Power Systerm Outage Force R R BT
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Wide-area blackouts in power grids
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Wide-area blackouts in power grids
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Power grids as graphs

2007108 TRANSMISSION SYSTEM

AS AT 151 DECEMBER 2006

The main high voltage part (above 132
kV) of the UK power grid can be
represented as a graph with 810
vertices and 1194 edges.

If lower voltage nodes were included
the graph would have many thousands
—of vertices.
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Functional structure

It is crucial that the graph
model captures the functional
and physical structure of the
grid: for example, power flow
through the edges.
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The islanding problem

e Find a way to identify energetically
balanced islands within a power
network (preferably in real time);

e The islands should have a small
overall powerflow through the
boundary

e Understand the effect of removing
a part of the grid on the rest of

the network. This requires the use
of realistic constraints in all

models.
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The islanding problem

e Find a way to identify energetically

balanced islands within a power

network (preferably in real time); =

e The islands should have a small

overall powerflow through the

Hypothetical
Island

boundary

e Understand the effect of removing
a part of the grid on the rest of

the network. This requires the use

of realistic constraints in all

models.
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Spectral clustering of power grids

Step 0 (Spectral dimension) Ildentify gaps in the spectrum of
the Laplacian weighted by the powerflow

80.75

23.25
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Spectral clustering of power grids

Step 0 (Spectral dimension) Identify gaps in the spectrum of
the Laplacian weighted by the powerflow

oM PLnorm Eiganvales
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Spectral clustering of power grids

Step 0 (Spectral dimension) Identify gaps in the spectrum of
the Laplacian weighted by the powerflow

2
AL

PL
1.5

Eigenvalue
—

0.5

% 10 20 30 40
Number
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Spectral clustering of power grids

Steps 1, 2 (Normalised Laplacian, Spectral embedding)

Use the first k eigenvectors to provide coordinates to the vertices
in R¥, for k = 2 and 3 to embed in R? or R3.

116 731
8 1213
- 2 5 7
0.3 . c 3210 lg
= " 2 0.5
S 02 4 1) 39 1 3
¢ 01 : o 37 30
c . . K 25 2
> 0 X e X N 0 26
@ s, © 28
T g1 £ 27 29
s ™ =] 38
S ey < 3319 1g
2 0.2 R 2-0.5[3522342021 |/~
0 v _——15
x S SO\ T—17
-0.3 g 23\3L —16
0 0.2 0.4 0 3605 1 1.5
First eigenvector First normalized coordinate
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Spectral clustering of power grids

Steps 1, 2 (Normalised Laplacian, Spectral embedding)

Use the first k eigenvectors to provide coordinates to the vertices
in RX, for k = 2 and 3 to embed in R? or R3.

Third eigenvector
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Spectral clustering of power grids

Steps 1, 2 (Normalised Laplacian, Spectral embedding)

Use the first k eigenvectors to provide coordinates to the vertices
in R¥, for k = 2 and 3 to embed in R? or R3.
362324 131210321131 ¢

v 7
0235 = 14 5
22 16
17 478
NEZY ARewEY
20
21/3319
0.2 s 339
37 2
-0.4 30
2726 78
N 29
0.6 22
-0.5 0 0.5

Stereographic projection
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Spectral clustering of power grids

Step 3 (Power flows)

14537 5al 35137
-]

353.72

Observe that the island with just bus 12 has the smallest boundary
0(S) = 8.53 but maximal expansion ¢(S) = 100%, as its boundary
amounts to all its (electrical) size.



Spectral clustering of power grids

Step 3 (Power flows)

373.01

Alternative power flow in the IEEE 39-bus test system and

clustering into four islands. 6



Spectral clustering of power grids

Step 3 (Power flows)

373.01
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UK power grid
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Synchronisation




Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., 0,) and a group (or collection
of groups) G the objective is to learn a collection of group
elements pj; that would transform object o; to o;.
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Synchronisation

Synchronisation problems deal with questions regarding aligning a
collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., 0,) and a group (or collection
of groups) G the objective is to learn a collection of group
elements pj; that would transform object o; to o;.

If it is possible to find a sequence of group elements that allow for
an accurate transformation between objects then this set can be

synchronised.
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Vertex and edge potentials

Let ' = (V, E) be a graph with vertex
set V and edge set E. Let G be a
group.

e A vertex potential is a map

f:V—aG.

e An edge potential is a function
p: E — G which is symmetric: for

every edge (/,j) € E we have
p(.i) = p(i,j)
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Compatible potentials

e We say that a group potential f
and an edge potential p are
compatible across an edge (i, j) iff

F(i) = p(i,))f()-

e We say that the two potentials v
and p are compatible iff they are
compatible across every edge
(i,j) e E.

e |t is natural to extend this
definition to the case ¥ : V — M,
where M is a G-module.
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Synchronisation problem

Bandeira, Singer and Spielman (2013) posed the following
question:

Given an edge potential p: E — G, does there exits a vertex
potential f : V — G which is compatible with p?
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Synchronisation problem

Bandeira, Singer and Spielman (2013) posed the following
question:

Given an edge potential p: E — G, does there exits a vertex
potential f : V — G which is compatible with p?

Note that in this formulation the converse problem is easy. Given a
vertex potential f : V — G, one can define a compatible edge

potential p by
p(i.j) = F(FG)
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Synchronisation problem

Bandeira, Singer and Spielman (2013) posed the following
question:

Given an edge potential p: E — G, does there exits a vertex

potential f : V — G which is compatible with p?

Note that in this formulation the converse problem is easy. Given a
vertex potential f : V — G, one can define a compatible edge

potential p by
p(i.j) = F(FG)

The problem becomes more complex when we consider functions
f:V — M, for a G-module M.
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Synchronisation along paths

A path ~ connecting vertices v and w
is a sequence of edges

’7:(6]_,62,-..76,7)

where for k =1,...,n, ex = (ix,Jx),

V=11, Jk = ix+1 and w = j,.
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An edge potential p: E — G gives rise to a map
{Pathsin '} — G, R:~v = p(e1)...p(en).

Reversal property
For e = (i,)), let
el =(j,i), and

= (e} .., e ).

Because the edge potential
p is symmetric:
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An edge potential p: E — G gives rise to a map

{Pathsin '} — G, R:~v = p(e1)...p(en




Holonomy groups

Let w be a based loop at the
vertex v.

Let Q, be the space of loops
based at v together with the
trivial loop 0 = (v, v); put
R(0) = 1.

Then we have a natural map

from the space Q, of loops
based at v to G defined by

w— R(w)
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Definition

The group element R(w) will be called the holonomy of the loop
w. We say that the holonomy of w is trivial if and only if
R(w) = 1, the identity element of G.

7



Holonomy group

Lemma

For every vertex v, H(v) = R(Q,) is a subgroup of G, called the
holonomy group at v. If the graph G is connected, for every two
vertices v and w, the holonomy groups 0, and Q,, are isomorphic.
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Restriction to paths

For a path 7 connecting a vertex v to a vertex w, let V() be the
set of vertices along -, and let E(+y) denote the set of edges

comprising 7.

If f:V — G, then f, is the restriction of f to V(). Similarly, p,
is the restriction of p to E(7).

We say that £, is compatible with p~ along v if and only if for
every edge e € E(v), e = (i,)), f,(i) = p(i,J))()-

It follows that
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Synchronisation along loops

Lemma
Let R(w) =1 for a based loop w. Then there exists an edge
potential f, : V., — G along w which is compatible with the edge

potential p,, along w.

80



Synchronisation along loops

Lemma
Let R(w) =1 for a based loop w. Then there exists an edge
potential f, : V., — G along w which is compatible with the edge

potential p,, along w.

Proof.

Let w = (e1,...,en), where i = j, = v. We put f,(v) =1, and
fu (i) = f(ik+1) = pler) - p(ex).

Then for every edge ex = (ik,jk), fu(ik) = p(ik,Jjk)f Uk)-
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Synchronisation along loops

Lemma
Let R(w) =1 for a based loop w. Then there exists an edge
potential f, : V., — G along w which is compatible with the edge

potential p,, along w.

Proof.

Let w = (e1,...,en), where i = j, = v. We put f,(v) =1, and
fu(k) = f(ik+1) = pler) - .. p(ex).

Then for every edge ex = (ik,jk), fu(ix) = plix,Jjx)f Uk)-

When k = n,

foUn) = p(e1) ... p(en) = R(w) =1

SO
fuljn) = fu(i) =1 80



Synchronisation and holonomy

Theorem (Gao-B-Mukherjee)

Let G(V, E) be a connected graph and let p be an edge potential
on G. Then there exists a vertex potential f : V — G compatible

with p if and only if the holonomy group H(v) of some vertex v is
trivial. It follows that the holonomy group of every other vertex is
also trivial, as is the holonomy of every loop in G.
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Assume that the holonomy of
every loop is trivial. Choose a
base vertex v and put

f(v) = 1. Then for every
vertex w define

f(w) = R(7)

where 7y is a path connecting v

to w.
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If 41 is a different path
connecting v to w, then

w= yoyfl is a loop based at
v, so that

1=R(w)=R(MR(M)™

so the construction is

independent of the path.
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If 41 is a different path
connecting v to w, then

w= yoyfl is a loop based at
v, so that

so the construction is
independent of the path.
The vertex potential f is

compatible with p by

construction.
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Corollary

Let p € P(E, G) be an edge
potential for which the
synchronization problem has a
solution, that is, there exists a
vertex potential f € P(V, G)
compatible with p.

Then for every triangle

(UQ, uy, U2) in g

p(uo, u1)p(ur, up)p(uz, ug) = 1.
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Cycle consistency

In summary, the triviality of holonomy groups for a symmetric edge
potential implies the following well-known cycle consistency
conditions:

p(i,i)=1 forallieV,
p(i,)p(, 1) =1 forall (i,j) € E,
p(i:)pU, K)p(k, i) =1 it (i,)), U, k), (k. i) € E.
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Fibre bundles and consistency conditions

Theorem (Steenrod 1951, §2). If
topological group G acts on Y and
M {Ui}, {pij} is a system of
coordinate transformations in the

L 4 space X satisfying the

cycle-consistency conditions then
there exists a fibre bundle % with
base space X, fibre Y, group G,

O

o

and coordinate transforms {p;;}.
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Fibre bundles and consistency conditions

p(i,5) L---% Non-trivial holonomy over a based

o loop in the base graph is represented
as a non-trivial transformation of
the fibre above the base vertex.

-
-="
-
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Bundle representation

Theorem (Gao-B-Mukherjee)

Let G be a topological group,

G = (V, E) a connected graph, and
p: E — G a map satisfying

pij = p;;* for all (i,j) € E. Wite
U={U; | 1<i<|V|} for an open
cover of G in which U; the open star
of the vertex i
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Bundle representation

Theorem (Gao-B-Mukherjee)

Let G be a topological group,

G = (V, E) a connected graph, and
p: E — G a map satisfying

pij = p;;* for all (i,j) € E. Wite
U={U; | 1<i<|V|} for an open
cover of G in which U; the open star

of the vertex i
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Bundle representation

Theorem (Gao-B-Mukherjee)
Then p defines a flat principal
G-bundle B, over G with a system
of local trivializations defined on the
open sets in L with constant bundle
transition functions pjj on
non-empty U; N U;. Furthermore, p
is synchronizable if and only if B, is
a flat principal G-bundle.
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Synchronisation bundle

The fibre bundle B, associated with the connected graph G and
edge potential p is called a synchronization bundle associated with
the edge potential p over G.
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Synchronisation bundle

The fibre bundle B, associated with the connected graph G and
edge potential p is called a synchronization bundle associated with
the edge potential p over G.

Our theorem establishes a one-to-one correspondence between
equivalence classes of synchronisable potentials and flat bundles on
G (up to isomorphism).
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Algorithm: SynCut

Input: G = (V,E,w), p € C1(G; G), number of partitions K
Output: Partitions {S1,---, Sk}

1. Solve synchronization problem over G for p, obtain
feC%G;G)

2. Compute djj = exp (—w;i ||fi — pjjfj||) on all edges (i,j) € E

3. Spectral clustering on weighted graph (V, E, d) to get
{51’ e Sk}

4. Solve synchronization problem within each partition S;, “glue
up” the local solutions to obtain f, € C°(G; G)

5. f + f,, repeat from Step 2

Tingran Gao, Jacek Brodzki, Sayan Mukherjee. “The Geometry of Synchronization Problems and Learning Group

88

Actione " cithmitted arXiv-1610 00051 2016



Obstruction to synchronisation




Obstruction to synchronisation

The compatibility condition on edges is
F(i) = p(i,J)f ()

To construct a useful way to measure the failure to satisfy this
condition, we now consider a G-module F (equipped with an inner
product), and F-valued functions f : V — F on the vertex set V.

We want to interpret the difference

F(i) = p(i,)f()-
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Quantification of obstructions

Let F be a vector space such that G C GL(F), and f € C°(G; F).
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Quantification of obstructions

Let F be a vector space such that G C GL(F), and f € C°(G; F).

Failure of synchronisation can be measured by frustration

> I = pyfill?

B lijev

"= S e

eV

which can be written as a Raleigh quotient
(f, Lyf)
f) =
10 =5
where Ly is the Graph Connection Laplacian

(Laf); = degl(,)Zm — pif)

jri
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The standard graph Laplacian

Given a graph G(V/, E) we define the gradient d : C[V]| — C[E] by
the formula
df(i,j) = (i) = £()
The divergence operator § : C[E] — C[V/] is given by
0p(i) = d(iJ).
i
The graph Laplacian is the operator A : C[V] — C[V] defined by
A, = dd:
AF(i) = Y (F()) = F()))

Jir~i
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Twisted differential

M is a G-module equipped with an inner product, and p a
symmetric potential as before.

d,: C(V,M) — C(E, M)

dpf(i,7) = (i) = p(i,1)f ()
for every f € C(V, M).
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Twisted differential

M is a G-module equipped with an inner product, and p a

symmetric potential as before.
d, : C(V,M) — C(E, M)
dpf (i,4) = £(i) = p(i,J)F(j)

for every f € C(V, M).

A solution to the synchronisation problem is an element of the
kernel of d,.
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Twisted Laplacian

The usual divergence:

§: C(E, M) — C(V, M)

=D 4(i))

Jij~i

together with d, give a twisted Laplacian

A, = 8d, = (F(i) = pli,J)F ()

Jiri
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The Raleigh quotient

P SR
(L, Apf)  (ijeE
Y R S PN

eV

1, (f) is defined in Bandeira et al. (2013) as the frustration
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Synchronisation and cohomology

We have defined a simple de Rham-type complex
C:0— C(V, M) 2 C,(E, M) — 0.
The cohomology of this complex is
H°(C, d) = kerd,
in degree zero. In degree one, we have that
HY(C, d) = C(E, M)/d,(C(V, M)).

Thus solutions to the synchronisation problem form the zeroth
cohomology group, which is the same as the kernel of d,,.
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Harmonic forms

Theorem

1. The space of solutions of the synchronisation problem given
by a unitary edge potential p is isomorphic to the space of
harmonic functions f, i.e., functions f with the property
A,f = 0. Moreover, we have the following orthogonal

decomposition:

C(V,M) = kerd, ® Im 4.

2. The Laplace operator A, is self-adjoint and positive.
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Inner products

The two linear spaces Q°(G, M) and Qé(g, M) are equipped with
inner products naturally induced from the G-invariant inner
product on M:

(f.g) =) difi.g), Vf,geQ’(G,M),
iev

(b, 9) = > wilei,vi), Vo,9 € QN (G, M),

(ig)eE
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Formal adjoints

With respect to these inner products, the twisted differential d,
and the divergence § are adjoints of each other.
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Learning group actions

Given a group G acting on a set X, simultaneously learn a new
action of G on X and a partition of X into disjoint subsets
X1, -+, Xk, such that the new action is as close as possible to the

given action and cycle-consistent on each X; (1 </ < K).
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Discrete Hodge theory

G=(V,E):
Spaces of cochains:
QG):={f:V =K},
QL(G) ={w: E = K|wj=—wj Vi~ j},

100



Discrete Hodge theory

G=(V,E):
Spaces of cochains:
QG):={f:V =K},
QL(G) ={w: E = K|wj=—wj Vi~ j},

A cochain complex

where
(df), =fi—f, VfeQ’(g),

1 1
= doa Zwu, Yw e QL (G).
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Discrete Hodge theory

The standard cochain complex

where

(df);=fi—f, VFeQ’(q),

1 1
deg Zwu, Yw € Q7 (G).

The graph Laplacian:

_ de;(l_) ST (F—f) VieV,vfeQ(g).

ji
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Twisted De Rham-Hodge Theory

1
Lof), = E i—f), Vf:V—->K
( 0 )l deg(l) jNI( J) —
1
L), = S (f—pyf) ViV F
( 1 )/ deg(/) J-N,-( Pij J) —
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Twisted De Rham-Hodge Theory

1
Lof), = E i—f), Vf:V—->K
( 0 )l deg(l) jNI( J) —
1
L), = S (f—pyf) ViV F
( 1 )/ deg(/) J-N,-( Pij J) —

Naively:
)y =il ¥ C(g: F)
Zwu, Yw e C! (G, F)

then L; = 5pdp.
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We have defined:
(dof); ~ fi = puﬂ, vf e C°(G; F)
(6pw); ~ Zwu, Yw € C*(G; F)

There is a problem: d, does not map into C* (G; F) (no
skew-symmetry).

<h

— piify = —pji (fi = pji;) # — (fi — pjifj) -
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We have defined:
(dof); ~ fi = pufj, vf e C°(G; F)

(6pw); ~ Zwu, Yw € C*(G; F)

There is a problem: d, does not map into C! (G; F) (no
skew-symmetry).

<h

— piify = —pji (fi = pji;) # — (fi — pjifj) -

Fix: Interpret fj — pjjfj as the “local expression” of (d,f); in a
local trivialization over 4l = {U; | 1 < i < |V/|} of the associated
F-bundle of Z,, denoted as 4, [F], such that the extra pj; factor
encodes a bundle transformation from U; to U;.
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Twisted de Rham-Hodge Theory

e Combinatorial Hodge Theory:

Oﬁﬁo(g)%ﬂl(@ﬁo,

e Twisted Combinatorial Hodge Theory:

dp
0= C°(G;F) <7_> Q' (G; B, [F]) == 0.
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Twisted de Rham-Hodge Theory

Theorem (Gao, B, Mukherjee (2016)))
Define

0) . 1) .
A :=5,d,,  AD = d,5,
then the following Hodge-type decomposition holds:

C%(G;F) = kerA(pO) ®Imé, =kerd, ®Imd,,
Q' (G; B, [F]) = Imd, @ ker A = Im d, & ker 5.

Solutions to the synchronisation problem are elements of ker d,,.
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Learning group actions




Learning group actions

Given a group G acting on a set X, simultaneously learn a new
action of G on X and a partition of X into disjoint subsets
X1, , Xk, such that

e the new action is as close as possible to the given action;

e and is cycle-consistent on each X; (1 </ < K).
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Example: Representations

If the set X is a vector space and we seek a direct sum
decomposition X = @,Kzl X;i, the LGA problem reduces to the
search for all irreducible G-subrepresentations of X.
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Example: Spins

X ={x1, -+ ,xn} equipped with

S: X — {£1}.

Let G = {£1} act on X transitively as
(gji, xi) = xj, gji = S(x;)S(x;).
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Example: Spins

Suppose the spin of each point in X
(i.e. the label map S) is unknown, but
we know the group actions {gj;}

Then we can reconstruct S — by
spectral clustering the dataset X,
viewed as vertices of a complete graph
G with weight wj; = gj; on the edge
connecting x; and x;.
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Example: Spins

Suppose the spin of each point in X

Original Dataset (Points with Spins)
(i.e. the label map S) is unknown, but o = ™ T g
we know the group actions {g;;} os I s
Then we can reconstruct S — by V % TS | E
spectral clustering the dataset X, ool y i
viewed as vertices of a complete graph e s # CEER &
G with weight wj; = gj; on the edge 022740 0 o
connecting x; and x;. °£ é Do S
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Example: Spins

Original Dataset {Points with Spins)
P v v g
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Lemurs

If we restrict attention to the determinant of the transformation
providing the best fit then we discover that teeth 1, 2, 7, 8 belong
to one cluster (right), while 3, 4, 5, 6 belong to the other cluster

(left). 109
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Classification into folivorous, frugivorous, and insectivorous

(a) Diffusion Maps (b) SynCut
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Extensions: defects in crystals
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Extensions: defects in crystals
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Extensions: defects in crystals

The local structure of the defects is
encoded in a comparison map

¢ : R? — R? which compares an ideal 0000000000
. 0000000000

crystal to one with defects. 00060000060
0000000000

0000000000

000006 G0OGVOGOOO

00000 90000

0000 o000 O0

o000 O0 o000 O0

00000 00000

00000 00000
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Extensions: defects in crystals

The local structure of the defects is
encoded in a comparison map
¢ : R? — R? which compares an ideal

Note that ¢ is only determined up to

0000

_ XXX

crystal to one with defects. 0006
o 0-0-0

. . . . 0000
action of point groups which determine

symmetries of the crystal.
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Extensions: defects in crystals

The local structure of the defects is

encoded in a comparison map

¢ : R? — R? which compares an ideal 0000000000
. 0000000000

crystal to one with defects. 00060000000
Note that ¢ is only determined up to 0000000000
. . . . 0000000000
action of point groups which determine 00006 00000
symmetries of the crystal. 00000000000
. 0000000DOGOOO
The geometry of a planar crystal is 00000000006
determined by a a two-dimensional de 000000OGOOOS
00000000C0OCOCS

Rham complex.
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The shape of lungs in COPD




Rerefence

The shape of lungs in chronic obstructive pulmonary disease, 2017

F. Belchi Guillamon, M. Pirashvili, M. Bennett, J. Conway,
R. Djukanovi¢, J. Brodzki

Scientific Reports, 28 March 2018, supported by the EPSRC
Joining the Dots programme
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COPD

e Chronic obstructive pulmonary disease (COPD) is a common
progressive disease, affecting more than 200 million individuals
worldwide and is the third leading cause of death.
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COPD

e Chronic obstructive pulmonary disease (COPD) is a common
progressive disease, affecting more than 200 million individuals
worldwide and is the third leading cause of death.

e It is characterized by chronic inflammation of the bronchi and
the lung parenchyma, resulting in varying degrees of
obstructive bronchitis and emphysema

e Although its pathology is heterogeneous, in functional terms,
all forms of COPD result in loss of lung function

e Cigarette smoking is the main COPD risk factor, but it is
quite frequent among people who never smoked, and many
smokers do not develop COPD.

e Many adults who develop COPD have low lung function in
the early life.
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The geometry of the lung
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Pictures from Smith et al., Human airway branch variation and chronic
obstructive pulmonary disease, PNAS 2018
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The geometry of the lung
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Pictures from Smith et al., Human airway branch variation and chronic
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The geometry of the lung
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Comparing persistence diagrams: the bottleneck distance

Definition
Let X and Y be finite multisets, whose underlying sets are subsets
of a metric space Z. Assume that X and Y are of equal size as

multisets.

The bottleneck distance between X and Y is defined by

ds(X,Y) = inf sup d(x,v(x))
7 xeX

where v ranges over all bijections of multisets v: X — Y.

We consider each point of multiplicity k as k points, and ~ is a
bijection between the resulting sets.
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The bottleneck distance
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White and black dots belong to persistence diagrams of two
different functions. The squares represent a bijection realising the

bottleneck distance, which equals half the side length.
124



Comparing persistence diagrams: the Wasserstein metric

Let X, Y be subsets of R? (multisets in general).
Let v: X — Y be a bijection. For p > 1 the cost of  is defined by

1/p

G = D Ix=0) I

xeD(f)

Definition
VVp(X, Y) = inf Cp(’}/)
Y

where the infimum is taken over all bijections v : X — Y.
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Topological characteristics of lungs

e The overall aim of this study was to develop a set of new
radiomic features that can distinguish between healthy
non-smokers as well as healthy smokers and patients with
COPD.

e The following four study participant groups defined by
smoking status and spirometry given by the GOLD guidelines
were studied:

e healthy non-smokers and healthy smokers (both judged as
healthy by spirometry showing FEV1 > 80% of predicted and
FEV1/FVC > 0.75),

e mild COPD patients, consisting of GOLD stage 1 (with FEV1
> 80% of predicted and FEV1/ FVC < 0.70)

e moderate COPD patients, consisting of GOLD stage 2 (50% <
FEV1 < 80% of predicted and FEV1/FVC < 0.70).
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Topological characteristics of lungs
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Topological characteristics of lungs
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Topological characteristics of lungs
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Directional complexity: the sum of the lengths of the bars in the

graph (total life span of the persistence diagram).
128



Topological characteristics of lungs
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Comparison to other standard measurements
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Comparison to other standard measurements
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H; and the shape of the lung
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H; and the shape of the lung
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H; and the shape of the lung
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Numerical invariant: total barcode length in the H; barcode.
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H; and the shape of the lung
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H, and the spatial structure
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H, and the spatial structure
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H, and the spatial structure
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H, and the spatial structure
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represented here in a 2-dim MDS projection
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Geometry and persitence
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Geometry and persitence
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Geometry and persitence
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e Persistence for fibre bundles: a combination of geometric and
topological information

e Synchronisation through persistence
e Symmetry detection

e Time evolution: geometric intuition to guide the evolution of
persistent homology

e Phase transitions in persistence diagrams
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The same equations have the same solutions.
Richard Feynman
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