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Introduction

Project Goal
Examine if TDA methods can be useful in diagnosis of heart
conditions, specifically Atrial Fibrillation (AFib).
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What is Atrial Fibrillation?

A heart condition
characterized by erratic
heart beats caused by
atrial spasms. It is
estimated to affect 1% of
the population.
In a normal heartbeat,
electric impulses are
synergystically propagated
from the sinoatrial node,
located in the upper
portion of the right atrium,
towards the right ventricle.

A normal rhythm.
https://upload.wikimedia.org/wikipedia/
commons/c/c3/Heart_conduct_sinus.gif
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What is Atrial Fibrillation?

In AFib, electrical impluses
are in chaos in the atria,
causing spasms and
irregular opening of the
valves leading to the
ventricles. AFib rhythm.

https://upload.wikimedia.org/wikipedia/
commons/4/44/Heart_conduct_atrialfib.gif
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Electrocardiograms

Image from https://upload.wikimedia.org/wikipedia/
commons/9/9e/SinusRhythmLabels.svg.
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Physionet Challenge

Organized in conjunction
with the annual Computing
in Cardiology (CinC)
conference.
CinC is an international
society of scientists and
professionals in medicine,
physics, engineering, and
computer science.

https://www.physionet.org/challenge/.
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Physionet Challenge
Dataset

Dataset consists of
8528 (training set)
and 3658 (test set)
ECG readings of
length at most 60
seconds classified
into four categories,
Normal, AF, Other,
and Noisy.

AF Classification from a Short Single Lead ECG Recording: the
Physionet Computing in Cardiology Challenge 2017.
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Physionet Challenge
Dataset

Relabeling had to be
done (twice) due to
disagreements in
classification of
1129 ECGs.

AF Classification from a Short Single Lead ECG Recording: the
Physionet Computing in Cardiology Challenge 2017.
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Physionet Challenge
Scoring

For each of the four types,
F1 is defined as:

F1n =
2× Nn

ΣN + Σn

F1a =
2× Aa

ΣA + Σa

F1o =
2×Oo

ΣO + Σo

F1p =
2× Pp

ΣP + Σp

AF Classification from a Short Single Lead ECG
Recording: the Physionet Computing in Cardiology

Challenge 2017.

The final score is:

F1n + F1a + F1o

3
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Physionet Challenge
The Results

Out of 75 competing models... almost everyone won!
4 scored 83%
4 scored 82%
9 scored 81%
7 scored 80%
Next 28 scored above 70%
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Physionet Challenge
The Results

Model Med./Alg1 # Feat. Train Validation Test
Teijeiro et al. Yes 86 0.893 0.912 0.831
Datta et al. Yes 150 0.970 0.990 0.829
Zabihi et al. Yes 150 0.951 0.968 0.826
Hong et al. Yes 622 0.970 0.990 0.825

1Requires medical knowledge or other advanced algorithm to extract
features.
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Questions:

Is it possible to diagnose AF just from studying "features"
of ECGs alone?

Is there signal from topological features of ECGs for
detecting AF?
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Tell Tale Signs
Two Recurrent Features

RR intervals: AF
rhythyms have
irregular RR
intervals.
P waves: AF
rhythyms are
missing P waves.

AF Classification from a Short Single Lead ECG Recording: the
Physionet Computing in Cardiology Challenge 2017.

Ignacio,Dunstan,Escobar,Trujillo,Uminsky Classifying ECGs via Topological Time Series Analysis



Tell Tale Signs
Two Recurrent Features

RR intervals: AF
rhythyms have
irregular RR
intervals.
P waves: AF
rhythyms are
missing P waves.

AF Classification from a Short Single Lead ECG Recording: the
Physionet Computing in Cardiology Challenge 2017.

Ignacio,Dunstan,Escobar,Trujillo,Uminsky Classifying ECGs via Topological Time Series Analysis



Pipeline
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Pipeline

This approach is not original. A few references that use slight
variation include Perea et al. (2015), Seversky et al. (2016),
and Umeda (2017).
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Sliding Windows

Idea: Store information about every part of the time series.
Steps

Select a window length W.
From time t = 0 to t = W , select D points on the time
series and record it as a vector v0 ∈ RD.

Slide the window by incrementing t , and repeat the
previous step for as long as possible. This generates a
point clound in RD.
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Sliding Windows
Example
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Sliding Windows
Embedding Dimension Dependence
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Sliding Windows
Embedding Dimension Dependence

For our analysis, we chose the window size to be 250ms and
D = 50.
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Sliding Windows
Inversion Invariance
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Persistent Homology
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Persistent Homology

We computed the persistence of 1, and 2- dimensional cycles
using Ripser.

BUT WAIT!!!!
WHAT DO THE HOLES MEAN?!?!?!?!?!
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Sliding Windows
Revisited

Periodicity in the time series is translated to cyclicity in the point
cloud.
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Persistent Homology

We computed the persistence of 1, and 2- dimensional cycles
using Ripser. We then computed statistics for the following
features:

Mean, sd, skewness, kurtosis of the birth, death, and
persistence of features.
Mean, sd, skewness, kurtosis of the birth, death, and
persistence when most persistent features are removed.
The number of features in each dimension.
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Random Forest

We used a random forest to classify the ECGs.
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Random Forest

We also examined feature importance and twelve were
included in the final set of features. These are:

Means and SD of birth and deaths of dimension 1 cycles.
Accumulated persistence and skewness of persistence of
dimension 1 cycles.
Number, and SD of persistence of dimension 1 and 2
cycles.
Mean of persistence for dimension 1 and 2 cycles.
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Results

Model Med./Alg2 # Feat. Train Validation Test
Teijeiro et al. Yes 86 0.893 0.912 0.831
Datta et al. Yes 150 0.970 0.990 0.829
Zabihi et al. Yes 150 0.951 0.968 0.826
Hong et al. Yes 622 0.970 0.990 0.825

TDA No 12 0.856 0.866 0.770
RR Yes 3 0.809 0.856 0.700

2Requires medical inspection or other advanced algorithm to extract
features.
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Results

Model f1a f1n f1o Final score
Teijeiro et al. 0.854 0.903 0.737 0.831
Datta et al. 0.823 0.916 0.750 0.829
Zabihi et al. 0.835 0.909 0.734 0.826
Hong et al. 0.823 0.912 0.751 0.825

TDA 0.590 0.973 0.749 0.770
RR 0.707 0.828 0.571 0.700

TDA + RR 0.716 0.976 0.842 0.844
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Results

Model Med./Alg3 # Feat. Train Validation Test
Teijeiro et al. Yes 86 0.893 0.912 0.831
Datta et al. Yes 150 0.970 0.990 0.829
Zabihi et al. Yes 150 0.951 0.968 0.826
Hong et al. Yes 622 0.970 0.990 0.825

TDA No 12 0.856 0.866 0.770
RR Yes 3 0.809 0.856 0.700

TDA + RR Yo (?) 15 0.921 0.957 0.844

3Requires medical inspection or other advanced algorithm to extract
features.
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Moving Forward.

Use the hidden test set from the competition.
Improve benchmarking on embedding dimension, and
noise detection.
Include P waves analysis.
Apply to other time-series data.
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