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Learning Algebraic Varieties from Samples

Linear spaces are varieties. Linear Algebra ↪→ Non-Linear Algebra.

Sara Kalǐsnik | November 22, 2018 2 / 46



Learning Algebraic Varieties from Samples

Short overview:

1 Introduction to Varieties (Basic Definitions, Examples, Applications)

2 Extracting Information from Samples: Dimension Estimates

3 Extracting Information from Samples: Persistent Homology

4 Extracting Information from Samples: Computing Polynomials, using
Algebraic Geometry Software
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Introduction to Varieties-Basic Definitions

Algebraic Varieties

Given polynomials f1, . . . , fr ∈ R[x1, . . . , xn], their common zero set is an
algebraic variety V . It lives in Rn or Cn (affine variety).

The zero set of z − x2 − y2.

Ideals, varieties and algorithms by Cox, Little, O’Shea.
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Introduction to Varieties-Basic Definitions

The zero set of z2 − x2 − y2.
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Introduction to Varieties-Basic Definitions

The zero set of x2 − y2z2 + z3.

In these last two examples the surfaces are not smooth everywhere: the
cone has a sharp point at the origin, and the last example intersects itself
along the whole y-axis. These are examples of singular points.
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Introduction to Varieties-Basic Definitions

Trott Curve

122(x4 + y4)− 152(x2 + y2) + 350x2y2 + 81 = 0.

A generic plane quartic over the complex projective plane has precisely 28
bitangent lines. The original proof was given by Cayley in 1879.
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Introduction to Varieties-Basic Definitions

Rotation Matrices

The group SO(3) consists of all 3×3-matrices X = (xij) with det(X) = 1
and XTX = Id3. The last constraint translates into 9 quadratic
equations:

x211 + x221 + x231 − 1 x11x12 + x21x22 + x31x32
x11x12 + x21x22 + x31x32 x212 + x222 + x232 − 1
x11x13 + x21x23 + x31x33 x12x13 + x22x23 + x32x33

x11x13 + x21x23 + x31x33
x12x13 + x22x23 + x32x33
x213 + x223 + x233 − 1

These quadrics say that X is an orthogonal matrix. Adding the cubic
det(X)− 1 gives 10 polynomials that define SO(3) as a variety in R9.
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Introduction to Varieties-Basic Definitions

For data in Rn we use the Euclidean metric:

‖u− v‖ =

√√√√ n∑
i=1

(ui − vi)2.
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Introduction to Varieties-Basic Definitions

Projective Space

The set of all lines in Rn+1 passing through the origin 0 = (0, ..., 0) is
called the n-dimensional real projective space and is denoted by PnR.
We can also identify it with

(Rn+1 \ 0)/R∗,

where (x1, . . . , xn+1) ' (λx1, . . . , λxn+1) for all λ ∈ R∗, i.e. , two points
in Rn+1 \ {0} are equivalent if they are on the same line through the
origin.
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Introduction to Varieties-Basic Definitions

Homogeneous Coordinates

An element of PnR is called a point. If P is a point, then any (n+ 1)-tuple
(a1, . . . , an+1) in the equivalence class P is called a set of homogeneous
coordinates for P . Equivalence classes are often denoted by
P = [a1 : . . . : an+1] to distinguish from the affine coordinates. Note that

[a1 : . . . : an+1] = [λa1 : . . . : λan+1]

for all λ ∈ R∗.
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Introduction to Varieties-Basic Definitions

Projective Varieties

Given homogeneous polynomials f1, . . . , fr ∈ R[x1, . . . , xn], their
common zero set is an projective variety V . It lives in a projective space
PnR or PnC.

Low Rank Matrices

Consider the set of m× n-matrices of rank ≤ r. This is the zero set of(
m
r+1

)(
n
r+1

)
polynomials, namely the (r + 1)× (r + 1)-minors. These

equations are homogeneous of degree r + 1. Hence this variety lives
naturally in the projective space Pmn−1

R .
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Introduction to Varieties-Basic Definitions

For data in PnR we use the Fubini-Study metric. Points u and v in PnR are
represented by their homogeneous coordinate vectors. The Fubini-Study
distance between u and v is the angle between the lines spanned by u and v:

distFS(u, v) = arccos
|〈u, v〉|
‖u‖‖v‖

.
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Introduction to Varieties-Basic Definitions

Implicit Representation of Affine Varieties

Let V(f1, . . . , fs) be a variety. These defining equations
f1 = . . . = fs = 0 of V are called an implicit representation of V .

The implicit representation of this variety is x2 − y2z2 + z3 = 0.Sara Kalǐsnik | November 22, 2018 14 / 46
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Introduction to Varieties-Basic Definitions

Parametrizations of Affine Varieties

Let V(f1, . . . , fs) be a variety. A rational parametric representation
of V consists of rational functions r1, . . . , rn ∈ R(t1, . . . , tm) such that
the points given by

x1 = r1(t1, . . . , tm),
x2 = r2(t1, . . . , tm),

...
xn = rn(t1, . . . , tm)

lie in V . We also require that V be the “smallest” variety containing
these points.
In many situations, we have a parametrization of a variety V , where
r1, . . . , rn are polynomials rather than rational functions. This is what we
call a polynomial parametric representation of V .
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Introduction to Varieties-Basic Definitions

This picture was not plotted using the
implicit representation

x2 − y2z2 + z3 = 0.

Rather, we used the parametric repre-
sentation given by

x = t(u2 − t2),
y = u,
z = u2 − t2

There are two parameters t and u since
we are describing a surface, and the
above picture was drawn using t, u in
the range −1 ≤ t, u ≤ 1.
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Introduction to Varieties-Basic Definitions

Does every variety have such a parametrization?
No, smooth plane curves of degree ≥ 3 do not.

In fact, most affine varieties cannot be parametrized in the sense described
here. Those that can are called unirational. In general, it is difficult to tell
whether a given variety is unirational or not.
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Introduction to Varieties-Basic Definitions

Unirational Varieties

If V is a unirational variety with given
rational parametrization, then it is easy
to create a finite subset Ω of V . One
selects parameter values at random and
plugs these into the parametrization.
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While most varieties are not unirational, those arising in applications often
are.
Sampling Real Algebraic Varieties for Topological Data Analysis by E. Dufresne, P.Edwards, H. Harrington, J. Hauenstein

Sampling from the uniform distribution on an algebraic manifold by P. Breiding, O. Marigliano
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Introduction to Varieties-Basic Definitions

Ideal, Prime Ideal

A subset I ⊂ R[x1, . . . , xn] is an ideal if it satisfies:

1 0 ∈ I.

2 If f, g ∈ I, then f + g ∈ I.

3 If f ∈ I and h ∈ R[x1, . . . , xn], then hf ∈ I.

An ideal I ⊂ R[x1, . . . , xn] is prime if whenever f, g ∈ R[x1, . . . , xn] and
fg ∈ I, then either f ∈ I or g ∈ I.

Let V ⊂ Rn be an affine variety. Then we set

I(V ) = {f ∈ R[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

I(V ) is an ideal! We call I(V ) the ideal of V .
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Introduction to Varieties-Basic Definitions

Irreducibility

An affine variety V ⊂ Rn is irreducible if whenever V is written in the
form V = V1 ∪ V2, where V1 and V2 are affine varieties, then either
V1 = V or V2 = V .

V(xz, yz) is not an irreducible variety.

Characterization of Irreducibility

Let V ⊂ Rn be an affine variety. Then V is irreducible if and only if I(V )
is a prime ideal.

Decomposing a Variety

Let V ⊂ Rn be an affine variety. Then V can be written as a finite union
V = V1 ∪ . . . ∪ Vm, where each Vi is an irreducible variety.
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Introduction to Varieties-Basic Definitions

The most important invariant of a linear subspace of affine space is its
dimension.

Dimension

The dimension d of V is the maximum integer such that there exist

V0 ⊂ V1 ⊂ . . . ⊂ Vd = V,

where all of the subsets are proper and all of the sets Vi are irreducible
varieties.
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Introduction to Varieties-Basic Definitions

Degree

The degree of an affine or projective variety of dimension d is the number
of intersection points of the variety with d hyperplanes in general position
(for an algebraic set, the intersection points must be counted with their
intersection multiplicity).
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Examples of Varieties

Hypersurfaces

The most basic varieties are defined by just one polynomial.

For example, the equation

x21 + x22 + · · ·+ x2n − 1 = 0

defines an algebraic hypersurface of
dimension n−1 in the Euclidean space
of dimension n.
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Examples of Varieties

Factor Analysis

In factor analysis, correlated continuous variables are modeled as
conditionally independent given hidden (latent) variables that are called
factors. In many applications the focus is on interpreting the factors as
unobservable theorized concepts. In fact, the desire to explain observed
correlations between individuals’ exam performances by the concept of
intelligence was the driving force in the original development of factor
analysis (Spearman, 1904, 1927).
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Examples of Varieties

Factor Analysis

Spearman was trying to discover the hidden structure of human
intelligence. His observation was that schoolchildren’s grades in different
subjects were all correlated with each other. He went beyond this to
observe a particular pattern of correlations, which he thought he could
explain as follows: the reason grades in math, English, history, etc., are all
correlated is performance in these subjects is all correlated with something
else, a general or common factor, which he named “general intelligence”,
for which the natural symbol was of course g or G.
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Examples of Varieties

Factor Analysis

If X is our data matrix, with n rows for the different observations
(students) and p columns for the different variables (Xij is the value of
variable j in observation i)(school subjects), then Spearman’s model
becomes:

X = ε+ Gw,

where ε is an error or residual term, where G is an n× 1 matrix and w is
a 1× p matrix. If we assume that the features and common factor are all
centered to have mean 0, and that there is no correlation between εij and
Gi for any j, then the correlation between the jth feature, X·j , and G is
just wj .
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Examples of Varieties

Factor Analysis

Under these assumptions, it follows that the correlation between the ith
feature and the jth feature is just the product of the factor loadings:

vij = cov[X·i, X·j ] = wiwj .

Up to this point, this is all so much positing and assertion and hypothesis.
What Spearman did next, though, was to observe that this hypothesis
carried a very strong implication about the ratios of correlation coefficients.
Pick any four distinct features, i, j, k, l. Then, if the model is true,

vij/vkj
vil/vkl

=
wiwj/wkwj

wiwl/wkwl

= wi/wk

wi/wk

= 1
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Examples of Varieties

Factor Analysis

The relationship vijvkl = vilvkj is called the “tetrad equation”. In
Spearman’s model, this is one tetrad equation for every set of four distinct
variables. Spearman found that the tetrad equations held in his data on
school grades (to a good approximation), and concluded that a single
general factor of intelligence must exist. This was, of course, logically
fallacious. Later work, using large batteries of different kinds of
intelligence tests, showed that the tetrad equations do not hold in general,
or more exactly that departures from them are too big to explain away as
sampling noise.
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Examples of Varieties

Factor Analysis

Tetrads have played a major role throughout the history of factor analysis
and also appear in recent research. While tetrads are ubiquitous in the
literature, there has been very little work attempting to find invariants of
models with more than one factor. The work by Kelley (1935) who
derived the pentad, a fifth degree polynomial vanishing over covariance
matrices from two-factor models, constitutes the exception.

Today

Algebraic Statistics is the use of algebra to advance statistics.
M. Drton, B. Sturmfels, S. Sullivant. Lectures on Algebraic Statistics, Springer 2009.

L. Pachter and B. Sturmfels. Algebraic Statistics for Computational Biology. Cambridge University Press 2005.

Sara Kalǐsnik | November 22, 2018 29 / 46



Learning Algebraic Varieties from Samples

Examples of Varieties

Rank Constraints

Consider m× n-matrices with linear entries having rank ≤ r. We saw the
r = 1 case earlier. A rank variety is the set of all matrices of fixed size
and rank that satisfy some linear constraints. The constraints often take
the simple form that two entries are equal. This includes symmetric
matrices, Hankel matrices, Toeplitz matrices, Sylvester matrices, etc.
Many classes of structured matrices generalize naturally to tensors.
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Examples of Varieties

Any n× n matrix A of the form

A =



a0 a1 a2 . . . . . . an−1

a1 a2
...

a2
...

... a2n−4

... a2n−4 a2n−3

an−1 . . . . . . a2n−4 a2n−3 a2n−2


is a Hankel matrix. If the i, j element of A is denoted Ai,j , then we have

Ai,j = Aj,i = ai+j−2.
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Examples of Varieties

Any n× n matrix A of the form

A =



a0 a−1 a−2 . . . . . . a−(n−1)

a1 a0 a−1
. . .

...

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2
...

. . . a1 a0 a−1

an−1 . . . . . . a2 a1 a0


is a Toeplitz matrix. If the i, j element of A is denoted Ai,j , then we have

Ai,j = Ai+1,j+1 = ai−j .
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Examples of Varieties

The distance geometry problem (DGP) is that of finding the coordinates of
a set of points by using the distances between some pairs of such points.
There exists nowadays a large community that is actively working on this
problem, because there are several real-life applications that can lead to the
formulation of a DGP:

Determine the location of sensors in telecommunication
networks.
In such a case, the positions of some sensors are known (which are called anchors) and some of the distances between

sensors (which can be anchors or not) are also known: the problem is to identify the positions in space for all sensors.

Determine the conformation of a given molecule.
Experimental techniques are able to estimate distances between pairs of atoms of a given molecule, and the problem

becomes the one of identifying the three-dimensional conformation of the molecule, i.e. the positions of all its atoms. In

this field, the main interest is on proteins, because discovering their three-dimensional conformation allows us to get

clues about the function they are able to perform.
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Examples of Varieties

In distance geometry, one encodes a metric space with p points in the
matrix M

2d1p d1p+d2p−d12 d1p+d3p−d13 · · · d1p+dp−1,p−d1,p−1
d1p+d2p−d12 2d2p d2p+d3p−d23 · · · d2p+dp−1,p−d2,p−1
d1p+d3p−d13 d2p+d3p−d23 2d3p · · · d3p+dp−1,p−d3,p−1

.

.

.

.

.

.

.

.

.
. . .

.

.

.
d1p+dp−1,p−d1,p−1 d2p+dp−1,p−d2,p−1 d3p+dp−1,p−d3,p−1 · · · 2dp−1,p


Here dij is the squared distance between points i and j. This symmetric
matrix is positive semidefinite if and only if the metric space is Euclidean,
and its embedding dimension is the rank of M . Hence the rank varieties of
these matrices encode the finite Euclidean metric spaces. We will now take
a look at the conformation space of the cyclo-octane, which corresponds to
the case p = 8 and r = 3.
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Examples of Varieties

Conformation Space of Cyclo-Octane
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Examples of Varieties

Conformation Space of Cyclo-Octane

Cyclo-octane consists of 8 carbon atoms arranged in a ring and each
bonded to a pair of hydrogen atoms. The location of the hydrogen atoms
is determined by that of the carbon atoms due to energy minimization.
Hence, the conformation space of a cyclo-octane consists of all possible
spatial arrangements, up to rotation and translation, of the ring of carbon
atoms. Each datum is a point in R24 = R8·3, which represents the
coordinates for {z0, . . . , z7} ⊂ R3, the locations of carbon atoms in
cyclo-octane.
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Examples of Varieties

Conformation Space of Cyclo-Octane

Each carbon atom z forms an isosceles triangle with its two neighbors in a
way that that the angle at z is 2π

3 . Therefore (after scaling), the squared
distances di,j = ‖zi − zj‖2 satisfy

di,i+1 = 1 and di,i+2 =
8

3

for all i (here i is modulo 8).
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Examples of Varieties

Conformation Space of Cyclo-Octane
M.W. Brown, S. Martin et. al: Algorithmic dimensionality reduction for molecular structure analysis

S. Martin, A. Thompson, E. A. Coutsias, and J. P. Watson: Topology of cyclo-octane energy landscape.

The conformation space of cyclo-octane is the union of a sphere with a Klein

bottle, glued together along two circles of singularities.
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Examples of Varieties

Distortion varieties

We have two views of a scene taken from different viewpoints. We see an
image point p0, which is the projection of a 3D point.

Given the p0 in the first image where can the corresponding point p1 in
the second image be?
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Examples of Varieties

Distortion varieties

The essential matrices are 3× 3 matrices that “encode” the epipolar
geometry of two views.

Motivation: Given a point in one image, multiplying by the essential
matrix will tell us which epipolar line to search along in the second view.
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Examples of Varieties

Distortion varieties
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Examples of Varieties

Distortion varieties

The optical centers of the two cameras, a point P , and the image points
p0 and p1 of P all lie in the same plane (epipolar plane).

These vectors are co-planar: ~C0p0, ~C1p1, ~C0C1.
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Examples of Varieties

Distortion varieties

Another way to write the fact they are co-planar is

( ~C0p0) · ( ~C1p1 × ~C0C1) = 0.
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Examples of Varieties

Distortion varieties

So we can write the coplanar constraint as

p0 · (t×Rp1) = 0,

where R is the rotation of camera 1 with respect to camera 0 and t is the
translation of the camera 1 origin with respect to camera 0.
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Examples of Varieties

Distortion varieties

The cross product of a vector a with a vector b, a× b, can be
represented as a 3× 3 matrix times the vector b: 0 −a3 a2

a3 0 −a1
−a2 a1 0

b = a× b.

The matrix on the left is a skew-symmetric matrix and we denote it by
[a]×.
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Examples of Varieties

Distortion varieties

We rewrite the epipolar constraint as a matrix product:

p0
T [t]×Rp1 = 0.

Then
E = [t]×R

is the 3× 3 matrix called the essential matrix. It relates the image of a
point in one camera to its image in the other camera, given a translation
and rotation.
Play the Fundamental Matrix Song

The variety of essential matrices is defined by ten cubics, known as the
Démazure cubics.

J. Kileel, Z. Kukelova, T. Pajdla and B. Sturmfels: Distortion varieties, Foundations of Computational Mathematics, (2018).

W. Hoff: EGGN 512 lectures.
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