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Learning Algebraic Varieties from Samples

Short overview:

1 Introduction to Varieties (Basic Definitions, Examples, Applications)

2 Extracting Information from Samples: Dimension Estimates

3 Extracting Information from Samples: Persistent Homology

4 Extracting Information from Samples: Computing Polynomials, using
Algebraic Geometry Software
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Extracting Information from Samples

The Data

We are given a finite sample of points Ω = {u(1), u(2), . . . , u(m)} in Rn or
RPn−1. These are sampled from an unknown variety.

Goal: Learn as much information about V as possible.

Dimension, equations, degree, homology.
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Extracting Information from Samples

Our Problem Illustrated
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Estimating the Dimension

How to use the existing literature on intrinsic dimension?

The dimensionality of a dataset is the minimum number of free variables
needed to represent the data without information loss. In more general
terms, a dataset is said to have intrinsic dimensionality(ID) equal to M
if its elements lie entirely within an M -dimensional subspace of Rd (where
M < d).

Data dimensionality estimation methods: a survey by Francesco Camastra

Maximum likelihood estimation of intrinsic dimension by E. Levina and P. Bickel

Angles and intrinsic dimension by M. D́ıaz, A. Quiroz and M. Velasco
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Estimating the Dimension

How to use the existing literature on intrinsic dimension?

The use of more dimensions than strictly necessary leads to several
problems.

space needed to store the data. As the amount of available

information increases, the compression for storage purposes becomes even

more important.

slower computation time
The speed of algorithms using the data depends on the dimension of the

vectors, so a reduction of the dimension can result in reduced computation

time.

curse of dimensionality
It can be hard to make reliable classifiers when the dimensionality of input

data is high.
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Estimating the Dimension

How to use the existing literature on intrinsic dimension?

The known algorithms for computing intrinsic dimension of Ω can be
grouped into two distinct categories: local methods and global
methods.

Local methods estimates use the information contained in sample
neighborhoods, whereas global approaches make use of the whole dataset.
Projection techniques and fractal-based methods represent two big
families of global methods.
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Estimating the Dimension: Projection Techniques

Projection techniques search for the best subspace to project the data by
minimizing the projection error. One such example is PCA.

Principal Component Analysis (PCA)

Assuming that V is a linear subspace of Rn, we perform the following
steps for the input Ω.

1 We record the mean u := 1
m

∑m
i=1 u

(i).

2 Let M be the m× n-matrix with rows u(i) − u.

3 We compute σ1 ≥ · · · ≥ σmin{m,n}, the singular values of M .

4 The PCA dimension is the number of σi above a certain threshold.

Each of the eigenvectors is called a principal component, which is where
the name of the method comes from.
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Estimating the Dimension: Projection Techniques

Let Ω be the data set above formed by points lying on the upper
semicirconference of equation x2 + y2 = 1. The ID of is 1. Nevertheless,
PCA yields two non-null eigenvalues. The principal components are
indicated by u and v.
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Estimating the Dimension: Projection Techniques

The idea behind this NPCA is that the manifold V \Sing(V ) is
approximately linear locally.

Nonlinear Principal Component Analysis (NPCA)

We partition the sample Ω into l clusters Ωε
1, . . . ,Ω

ε
l ⊂ Ω depending on ε.

For each cluster Ωε
i we apply the usual PCA and obtain the

estimate dimpca(Ω
ε
i). We take the average of these local dimensions,

weighted by the size of each cluster. The result is the nonlinear PCA
dimension

dimnpca(Ω, ε) :=
1∑l

i=1 |Ωε
i |

l∑
i=1

|Ωε
i | · dimpca(Ω

ε
i).
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Estimating the Dimension: Fractal-Based Methods

Motivation

The notion of fractal dimension originates in the study of dynamical
systems. The attracting sets of simple dynamical systems is often a
submanifold, with an obvious dimension, but in non-linear and chaotic
dynamical systems the attracting set may not be a manifold. The Cantor
set, defined by removing the middle third from the interval [0, 1], and then
recursing on the remaining pieces, is a typical example. It has the same
cardinality as R, but it is nowhere-dense, meaning it at no point resembles
a line. The typical fractal dimension of the Cantor set is log3(2).
Intuitively, the Cantor set has “too many” points to have dimension zero,
but also should not have dimension one.
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Estimating the Dimension: Fractal-Based Methods

A space-filling curve. This curve, invented by Hilbert in 1891, is a
one-dimensional object that evolves iteratively and progressively fills a
square— a two-dimensional object! —. The first six iteration steps that are
displayed show how the curve is successively refined, folded on itself in a
similar way as a cabbage leaf.
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Estimating the Dimension: Fractal-Based Methods

Koch’s island (or snowflake). This classical fractal object was first described
by Helge von Koch in 1904.
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Estimating the Dimension: Fractal-Based Methods

It is built by starting with an equilateral triangle, removing the inner third of
each side, replacing it with two edges of a three-times-smaller equilateral
triangle, and then repeating the process indefinitely. The fractal dimension
of the Koch’s island is log3(4).
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Estimating the Dimension: Fractal-Based Methods

The primary definition for sets is given by the Hausdorff dimension:

Hausdorff Dimension

Let S be a subset of a metric space X, let d ∈ [0,∞), and let δ > 0. The
Hausdorff measure of S is

Hd(S) = inf
δ

inf


∞∑
j=1

diam(Bj)
d |S ⊂ ∪∞j=1Bj and diam(Bj) ≤ δ




where the inner infimum is over all coverings of S by balls Bj of diameter
at most δ. The Hausdorff dimension of S is

dimH(S) = inf
d
{d |Hd(S) = 0}

The Hausdorff dimension of the Cantor set, for example, is log3(2).

Sara Kalǐsnik | November 23, 2018 15 / 37



Learning Algebraic Varieties from Samples

Estimating the Dimension: Fractal-Based Methods

Since the Hausdorff dimension is not easy to evaluate, in practical
application it is replaced by an upper bound that differs only in pathological
examples.

If we try to cover the unit square with little squares of side length ε, how
many will we need? Obviously, the answer is 1/ε2. How about to cover a
segment of length 1? Here we need only 1/ε little squares.
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Estimating the Dimension: Fractal-Based Methods

If we think of the square and segment as sitting in space and try to cover
them with little cubes ε on a side, we get the same answer. And if we use
the little cubes to cover a 1× 1× 1 cube, how many will we need? Exactly
1/ε3. The exponent here is the same as the dimension of the thing we are
trying to cover.
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Estimating the Dimension: Fractal-Based Methods

For any ε > 0, let Nε(S) be the minimum number of n-dimensional cubes
of side-length ε needed to cover S.
If there is a number d so that

Nε(S) ∼ 1/εd as ε→ 0,

we say that the box-counting dimension of S is d.
Note that the box-counting dimension is d if and only if there is some
positive constant k so that

lim
ε→0

Nε(S)

1/εd
= k.

Since both sides of the equation above are positive, it will still hold if we
take the logarithm of both sides to obtain

lim
ε→0

(lnNε(S) + d ln ε) = ln k.
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Estimating the Dimension: Fractal-Based Methods

Solving for d gives

d = lim
ε→0

ln k − lnNε(S)

ln ε
= − lim

ε→0

lnNε(S)

ln ε
.

Note that the ln k term drops out, because it is constant while the
denominator becomes infinite as ε→ 0. Also, since 0 < ε < 1, ln ε is
negative, so d is positive as we would expect.
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Estimating the Dimension: Fractal-Based Methods

Box Counting Dimension

In Rn we choose as a box the parallelopiped with lower vertex
u− = min(u(1), . . . , u(m)) and upper vertex u+ = max(u(1), . . . , u(m)),
where “min” and “max” are coordinatewise minimum and maximum.

For j = 1, . . . , n, the interval [u−j , u
+
j ] is divided into equally sized

intervals of length ε (if needed, we extend the interval on the right). We
determine the number Nε(Ω) of boxes that contain a point in Ω. Then
the box counting dimension estimate is

dimbox(Ω, ε) := − lnNε(Ω)

ln ε
.

The projective version of this estimates involves taking the Fubini-Study
distance when splitting intervals into smaller intervals.
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Estimating the Dimension: Fractal-Based Methods

Box Counting Dimension and Persistent Homology

Let MST (X) denote the minimal spanning tree of a finite point set X in
a metric space and let

E0
d(X) =

1

2

∑
e∈MST (X)

‖e‖d

where the sum is taken over all edges e in the tree MST (X), and ‖e‖
denotes the length of the edge.
Define dimMST (X) to be

dimMST (X) = inf{d : E0
d({xj}) < C ∀finite subsets {xj} of X}.

Then
dimMST (X) = dimbox(X).

The minimal spanning tree and the upper box dimension by G. Kozma, Z. Lotker and G. Stupp
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Estimating the Dimension: Fractal-Based Methods

Box Counting Dimension and Persistent Homology

For finite metric spaces X there is a bijection between the edges of the
Euclidean minimal spanning tree of X and the intervals in the canonical
decomposition of PH0(X) (with Čech complexes), where the length of an
interval in PH0(X) is half the length of the corresponding edge. In this
spirit, B. Scheweinhart defined

Eid(X) =
∑

(x,y)∈PHi(X)

(y − x)d

where the sum is taken over all bounded PHi(X) intervals, and

dimi
PH(X) = inf{d : Eid({xj}) < C ∀finite subsets {xj} of X}.

Persistent Homology and the upper box dimension by B. Scheweinhart
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Estimating the Dimension: Fractal-Based Methods

A good substitute for the box-counting dimension can be the correlation
dimension. The correlation dimension gives a lower bound on the
Hausdorff dimension of a measure.

Correlation Dimension

Let Ω = {u(1), u(2), . . . , u(m)} be a set of points in Rn of cardinality m.
The correlation integral C(ε) is defined as

C2(ε) = lim
m→∞

2

m(m− 1)

m∑
i=1

m∑
j=i+1

I(‖(u(j) − u(i)‖ ≤ ε),

where I is an indicator function.
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Estimating the Dimension: Fractal-Based Methods

Correlation Dimension

When looking at the data set on the scale of a single point, C2(ε) is the
number of neighboring points lying closer than a certain threshold ε. This
number grows as a length for a 1D object, as a surface for a 2D object, as
a volume for a 3D object, and so forth. So we expect C(ε) to be

approximately εd. Just like before this suggests using log(C(ε))
log(ε) as a

dimension estimate.
A more practical estimate is obtained from C(ε) by selecting some small
h > 0 and putting

dimcor(Ω, ε) :=

∣∣∣∣ logC(ε)− logC(ε+ h)

log(ε)− log(ε+ h)

∣∣∣∣ .
In practice, we compute the dimension estimates for a finite subset of
parameters ε1, . . . , εk and put h = mini 6=j |εi − εj |.
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Estimating the Dimension: Fractal-Based Methods

Correlation Dimension

Usually, the best estimate for the dimension is obtained in the largest
region where the slope of C2(ε) computed from the sample is almost
constant in the log-log plot. This region is often called a “plateau”.
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Estimating the Dimension: Fractal-Based Methods

Persistent Homology Curve Dimension Estimate

First we partition Ω into l clusters Ωε
1, . . . ,Ω

ε
l using single linkage

clustering with ε. On each subsample Ωi we construct a minimal spanning
tree. Suppose that the cluster Ωi has mi points. Let fi(j) be the length
of the j-th longest edge in a minimal spanning tree for Ωi. For each Ωi

we compute

dimPHcurve(Ωi, ε) =

∣∣∣∣∣ log(mi)

log( 1
mi−1

∑mi−1
j=1 fi(j))

∣∣∣∣∣ .
The persistent homology curve dimension estimate dimPHCurve(Ω, ε) is
the average of the local dimensions, weighted by the size of each cluster:

dimPHcurve(Ω, ε) :=
1∑l

i=1 |Ωε
i |

m∑
i=1

|Ωi|dimPHcurve(Ωi, ε).

A fractal dimension for measures via persistent homology by H. Adams, M. Aminian, E. Farnell, M. Kirby, J. Mirth, R.

Neville, C. Peterson, C. Shonkwiler

Sara Kalǐsnik | November 23, 2018 26 / 37



Learning Algebraic Varieties from Samples

Estimating the Dimension

Maximum Likelihood Estimation of Intrinsic Dimension

Let k be the number of samples u(j) in Ω that are within distance ε
to u(?). We write Ti(u

(?)) for the distance from u(?) to its i-th nearest
neighbor in Ω. Note that Tk(u

(?)) ≤ ε < Tk+1(u
(?)). The Levina-Bickel

formula around the point u(?) is

dimMLE(Ω, ε, u(?)) :=

(
1

k

k∑
i=1

log
ε

Ti(u(?))

)−1
.

This expression is derived from the hypothesis that k = k(ε) obeys a
Poisson process on the ε-neighborhood {u ∈ Ω : distRn(u, u(?)) ≤ ε}, in
which u is uniformly distributed. The formula is obtained by solving the
likelihood equations for this Poisson process.

Sara Kalǐsnik | November 23, 2018 27 / 37



Learning Algebraic Varieties from Samples

Estimating the Dimension

Maximum Likelihood Estimation of Intrinsic Dimension

It is not clear how to choose u(?) from the given Ω. We chose the
following method. We fix the sample neighborhood
Ωε
i := {u ∈ Ω : distRn(u, u(i)) ≤ ε}. For each i we evaluate the formula

for Ωε
i with distinguished point u(i). With this, the MLE dimension

estimate is

dimMLE(Ω, ε) :=
1∑m

i=1 |Ωε
i |

m∑
i=1

|Ωε
i | · dimMLE(Ωε

i , ε, u
(i)).
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Estimating the Dimension

ANOVA Dimension

For data u(1), . . . , u(m) sampled from a manifold M ⊂ Rn and a point
u(?) ∈M Diaz, Quiroz and Velasco consider a statistic which estimates
the variance of the angle between pairs of vectors u(i) − u(?) and
u(j) − u(?), for data points u(i), u(j), near u(?) and evaluate this statistic
as a tool for estimation of the intrinsic dimension of M at u(?).
For uniform data on Sd−1, the expected angle between two random
vectors is always π

2 (regardless of d), but the variance βd of this angle
decreases rapidly with d.

β2s−1 =
π2

4
− 2

s∑
j=0

1

(2j + 1)2
and β2s =

π2

12
− 2

s∑
j=0

1

(2j)2
.

for s ∈ N.
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Estimating the Dimension

ANOVA Dimension

We again fix ε > 0, and we relabel so that u(1), . . . , u(k) are the points in
Ω with distance at most ε from u(?). Let θij ∈ [0, π] denote the angle
between u(i) − u(?) and u(j) − u(?). Then, they define the
angle-variance of the θij as

S =
1(
k
2

) ∑
1≤i<j≤k

(
θij −

π

2

)2
.

For small ε and Ω sampled from a d-dimensional manifold, the angles θij
are approximately Θd-distributed. Hence, S is expected to be close to
βdimM . The ANOVA dimension estimate of Ω is the index d such that
βd is closest to S:

dimANOVA(Ω, ε, u(?)) := argmind |βd − S|.

Local angles and dimension estimation from data on manifolds by Diaz, Quiroz and Velasco
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Estimating the Dimension

How to use the existing literature on intrinsic dimension?

Key point: Our sample size m = |Ω| is fixed and relatively small.

There are various estimators dim∗(Ω, ε). These depend on a parameter
ε > 0 and they produce positive real numbers.

Key point: ε does not tend to 0. This would be meaningless.

We tackle this by instead considering dimension diagrams. The dimension
diagram of the sample Ω is the graph of the function
(0, 1)→ R≥0, ε 7→ dim(Ω, ε), where dim(Ω, ε) is a dimension estimate.
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Examples and Software

The implementations are available in the Julia package
LearningAlgebraicVarieties.
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Sample Datasets

Our software includes samples from the following varieties:

SO(3);

the projective variety of 2× 3-matrices of rank 1;

the conformation space of the cyclo-octane molecule;

3× 4 rank two matrices.
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Analyzing a Sample from SO(3)

To produce our sample from SO(3), we sample a R3×3 matrix from a standard

Gaussian and then take a Q of the QR-decomposition.
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Analyzing a Sample from SO(3)

NPCA often overestimates
the dimension as is the
case with our sample from
SO(3). Three estimates
are very close to 3 so we
guess that the dimension
is 3, which is in fact the
true dimension. If the
dimension diagrams were
more spread out, then we
can still use them to get
a range of values that are
candidates for the dimen-
sion.
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Analyzing a Sample from the Segre Variety

We produce a sample for the Segre variety V = RP× RP2 by
independently sampling two standard Gaussian matrices of format 2× 1
and 1× 3 and multiplying them.

Dimension diagrams for 200 points on the variety of 2× 3 matrices of rank
1. The left picture shows dimension diagrams for the estimates in R6. The
right picture shows those for projective space RP5. The true dimension is 3.
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Analyzing a Sample from Cyclo-octane

We use the same sample of 6040 points that was analyzed by Martin et al
and randomly select a.

Dimension diagrams for 420 randomly selected points from the cyclo-octane
sample. The true dimension is 2.
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