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Learning Algebraic Varieties from Samples

Short overview:

1 Introduction to Varieties (Basic Definitions, Examples, Applications)

2 Extracting Information from Samples: Dimension Estimates

3 Extracting Information from Samples: Persistent Homology

4 Extracting Information from Samples: Computing Polynomials, using
Algebraic Geometry Software
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Extracting Information from Samples

The Data

We are given a finite sample of points Ω = {u(1), u(2), . . . , u(m)} in Rn or
RPn−1. These are sampled from an unknown variety.

Goal: Learn as much information about V as possible.

Dimension, equations, degree, homology.
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Measuring Shape

Homology is a formalism for measuring shape...

b1 = 1 b1 = 0 b1 = 2
b2 = 0 b2 = 1 b2 = 1

The extension of homology to more general setting including point
clouds is called persistent homology.

The concept emerged independently in the work of Frosini, Ferri, and
collaborators in Bologna, Italy, of Robins at Boulder, Colorado, and of
Edelsbrunner, Letscher and Zomorodian at Duke, North Carolina.
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Persistent Homology

A finite metric space X has no interesting topology.

Let U(X, R) be the union of balls of radius R centered at the points of X.
For any R > 0 and i ≥ 0, i-th Betti number of U(X, R) gives us a
qualitative descriptor of X.
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Persistent Homology
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Persistent Homology

b0 = 1 b0 = 1
b1 = 2 b1 = 1
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Persistent Homology

Problems with this descriptor

No canonical choice of R.

Invariant is unstable with respect to perturbation of data or small
changes in R.

Does not distinguish ‘small’ holes from ‘big’ ones.
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Persistent Homology

Persistent Homology

Consider not only single reconstruction U(X, R) of X, but a
1-parameter family of reconstructions

F (X) = {U(X, r)}r∈[0,∞)

and inclusion maps U(X, r) ↪→ U(X, r′) whenever r ≤ r′.
Apply i-dimensional homology functor Hi with field coefficients

Obtain a family of vector spaces {Vr}r and linear maps between
them. Call such algebraic structures persistence vector spaces.

Can we classify persistence vector spaces that arise from filtrations up to
isomorphism?
Yes, by barcodes.
Computing Persistent Homology by G. Carlsson and A. J. Zomorodian
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Persistent Homology
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Persistent Homology
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Persistent Homology
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Persistent Homology
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Persistent Homology
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Persistent Homology
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Persistent Homology

Sara Kalǐsnik | November 23, 2018 16 / 62



Learning Algebraic Varieties from Samples

Persistent Homology
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Persistent Homology
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Persistent Homology

Barcode for H1:

For
each interval:

Left endpoint is the index at which the hole is born

Right endpoint is index at which hole dies

Length of interval is the lifetime of a hole in filtration
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Persistent Homology
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Persistent homology barcodes for the Trott curve.
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How do we implement this?

The problem is that we cannot feed unions of balls to a computer. We must
find combinatorial objects whose shape is the same as that of this union
(‘homotopy equivalence’).

Simplicial Complexes

The building blocks are simplices, for example, vertices (0-simplices),
edges (1-simplices), triangles (2-simplices), tetrahedra (3-simplices) and
higher dimensional equivalents glued together along a common faces.
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From Topological Spaces to Simplicial Complexes

To get from the continuous world of open and closed sets set to simplicial
complexes, we use a construction called the nerve of a covering.

Nerve of a Covering

Let X be a topological space, and let U = {Ui}i∈I be any covering of X.
The nerve of U, denoted by NU, is the abstract simplicial complex with
vertex set I, where a family {i0, . . . , ik} spans a k-simplex if and only if
Ui0 ∩ . . . ∩ Uik 6= ∅.
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Triangulating Point Clouds

Nerve of a Covering

Let X be a topological space, and let U = {Ui}i∈I be any covering of X.
The nerve of U, denoted by NU, is the abstract simplicial complex with
vertex set I, where a family {i0, . . . , ik} spans a k-simplex if and only if
Ui0 ∩ . . . ∩ Uik 6= ∅.
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Triangulating Point Clouds

NERVE THEOREM

Suppose that X and U are as above, and suppose that the covering
consists of finitely many open sets. Suppose further every nonempty
intersection of sets in U is contractible. Then NU is homotopy equivalent
to X.
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Triangulating Point Clouds

NERVE THEOREM

Suppose that X and U are as above, and suppose that the covering
consists of finitely many open sets. Suppose further every nonempty
intersection of sets in U is contractible. Then NU is homotopy equivalent
to X.
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Triangulating Point Clouds

NERVE THEOREM

Suppose that X and U are as above, and suppose that the covering
consists of finitely many open sets. Suppose further every nonempty
intersection of sets in U is contractible. Then NU is homotopy equivalent
to X.

This implies that under certain conditions the nerve has homotopy groups
isomorphic to the underlying space. One now needs methods for generating
coverings.
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Generating Coverings

There are a variety of ways to triangulate a collection of points.

Čech Complex

When the space in question is a finite metric space C, one covering is
given by the family Br(X) = {Br(x)}x∈X , for some r > 0. We will
denote this construction by Č(C, r), and refer to it as the Čech complex
attached to C and r.

Since the sets Br(x) are all convex, the Nerve Theorem applies,.

Given two radii r < r′, we have the inclusion Č(C, r) ⊆ Č(C, r′).
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Efficiency versus Precision

Vietoris Rips Complex

Given a point cloud C and a fixed number r ≥ 0, we define the
Vietoris-Rips complex of C and r to be:

VR(C, r) = {σ ⊆ X |Br(x) ∩Br(x) 6= ∅,∀x, y ∈ σ}.

For r < r′, we again have the inclusion VR(C, r) ⊆ VR(C, r′).
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Efficiency versus Precision

Vietoris Rips Complex

Given a point cloud C and a fixed number r ≥ 0, we define the
Vietoris-Rips complex of C and r to be:

VR(C, r) = {σ ⊆ X |Br(x) ∩Br(x) 6= ∅,∀x, y ∈ σ}.

For r < r′, we again have the inclusion VR(C, r) ⊆ VR(C, r′).

Saving grace: Č(C, r) ⊆ VR(C, r) ⊆ Č(C, 2r).
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Delaunay Triangulation

Even the Vietoris-Rips complex is computationally expensive, though, due
to the fact that its vertex set consists of the entire metric space in question.

Voronoi Cell

Given a finite point set X ⊆ Rd, we define the Voronoi cell of a point
p ∈ X to be:

Vp = {x ∈ Rd |d(x, p) ≤ d(x, q), ∀q ∈ X}.
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Delaunay Triangulation

Voronoi Diagram

The collection of all Voronoi cells is called the Voronoi diagram of X; we
note that it covers the entire ambient space Rd.
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Delaunay Triangulation

The Delaunay triangulation of S to be (isomorphic to) the nerve of the
collection of Voronoi cells; more precisely,

Del(X) = {σ ⊆ X |
⋂
p∈σ

Vp 6= ∅}.

A set of vertices σ ⊆ X forms a simplex in Del(S) iff these vertices all lie
on a common (d− 1)-sphere in Rd. Assuming general position, we do in
fact get a simplicial complex.
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Delaunay Triangulation
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Alpha Complex

We again let X be a finite set of points in Rd and fix some radius r. As
seen above, the complex Č(X, r) has the same homotopy type as the union
of r-balls Xr, but requires far too many simplices for large r. We now
define a much smaller complex, Alpha(X, r), which is geometrically
realizable in Rd, and gives the correct homotopy type.
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Alpha Complex

For each p ∈ X, we intersect the r-ball around p with its Voronoi region, to
form Rr(p) = Br(p)∩ Vp. These sets are convex and their union still equals
Xr. We then define the Alpha complex of X and r to be the nerve of the
collection of these sets:

Alpha(X, r) = {σ ⊆ X |
⋂
p∈σ

Rr(p) 6= ∅}
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Alpha Complex
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Persistent Homology for Algebraic Varieties

Theoretical Guarantees

The Čech complex of a covering U =
⋃m
i=1 Ui has the homology of the

union of balls U . But, can we give conditions on the sample Ω ⊂M
under which a covering reveals the true homology of M? A result due to
Niyogi, Smale and Weinberger offers an answer in some circumstances.
These involve the concept of the reach, which is an important metric
invariant of a manifold M .
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Persistent Homology for Algebraic Varieties

Theoretical Guarantees

The medial axis of M is the set Med(M) of all points u ∈ Rn such that
the minimum distance from M to u is attained by two distinct points.
The reach τM is the shortest distance from any point in the variety M to
any point in its medial axis Med(M).

Niyogi, Smale and Weinberger refer to 1/τM as the condition number of
M .

Finding the homology of submanifolds with high confidence from random samples by P. Niyogi, S. Smale and S. Weinberger
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Persistent Homology for Algebraic Varieties

Theoretical Guarantees
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Persistent Homology for Algebraic Varieties

Theoretical Guarantees

Let M ⊂ Rn be a compact manifold of dimension d ≤ 17, with reach
τ = τM and d-dimensional Euclidean volume ν = vol(M). Let
Ω = {u(1), . . . , u(m)} be i.i.d. samples drawn from the uniform probability
measure on M . Fix ε = τ

4 and β = 16dτ−dν . For any desired δ > 0, fix
the sample size at

m > β ·
(
log(β) + d+ log(

1

δ
)
)
.

With probability ≥ 1− δ, the homology groups of the following set
coincide with those of M :

U(ε) =

m⋃
i=1

{
x ∈ Rn : ‖x− u(i)‖ < ε

}
.
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Persistent Homology for Algebraic Varieties

Theoretical Guarantees

This theorem gives the asymptotics of a sample size m that suffices to
reveal all topological features of M . For concrete parameter values it is
less useful, though. For example, suppose that M has dimension 4, reach
τ = 1, and volume V = 1000. If we desire a 90% guarantee that U(ε) has
the same homology as M , so δ = 1

10 , then m must exceed 1592570365.
In addition to that, the theorem assumes that the sample was drawn from
the uniform distribution on M .
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Persistent Homology for Algebraic Varieties

Tangent Spaces and Ellipsoids

Let us now return to our initial problem of a sample from a variety.
Suppose that in addition to knowing Ω as a finite metric space, we also
know some polynomials that vanish on Ω and the variety V that we are
sampling from. Using their Jacobian, we can estimate the tangent space
of V at each point u(i). We use ε-ellipsoids that are adjusted to these
tangent spaces instead of ε-balls when computing the Vietoris-Rips
complex for persistent homology in Eirene.

Sara Kalǐsnik | November 23, 2018 42 / 62



Learning Algebraic Varieties from Samples

Persistent Homology for Algebraic Varieties

Tangent Spaces and Ellipsoids

In practice, we perform the following procedure. Let f = (f1, . . . , fk) be a
vector of polynomials that vanish on V , derived from the sample Ω ⊂ Rn.
An estimator for the tangent space Tu(i)V is the kernel of the Jacobian
matrix of f at u(i). In symbols,

T̂u(i)V := ker Jf(u(i)).
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Persistent Homology for Algebraic Varieties

Tangent Spaces and Ellipsoids

Let qi denote the quadratic form on Rn that takes value 1 on
T̂u(i)V ∩ Sn−1 and value λ on the orthogonal complement of T̂u(i)V in
the sphere Sn−1. Then, the qi specify the ellipsoids

Ei :=
{√

qi(x)x ∈ Rn : ‖x‖ ≤ 1
}
.

The role of the ε-ball enclosing the ith sample point is now played by
Ui(ε) := u(i) + εEi. These ellipsoids determine the covering
U(ε) =

⋃m
i=1 Ui(ε) of the given point cloud Ω. From this covering we

construct the associated Čech or Vietoris-Rips complexes.
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Persistent Homology for Algebraic Varieties

Tangent Spaces and Ellipsoids

The left picture shows the barcode constructed from the ellipsoid-driven
simplicial complex with λ = 0.01 and the right picture with standard
Vietoris-Rips. All relevant topological features persist longer in the left
plot.
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Numerical Linear Algebra
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Numerical Linear Algebra
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Computational Algebraic Geometry
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Analyzing a Sample from SO(3)

Finding Equations

If we type

we get a list of 20 polynomials that vanish on the sample, the first two
being

x1x4 + x2x5 + x3x6 = 0,
x1x7 + x2x8 + x3x9 = 0.
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Analyzing a Sample from SO(3)

Finding Equations

d method number of linear independent equations

1 SVD 0
2 SVD 20
2 QR 20
2 RREF 20
3 SVD 136
4 SVD 550
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Analyzing a Sample from SO(3)

where p1 is the path to the Bertini binary. Bertini tells us that the
dimension is 3. We also learn that SO(3) is irreducible and that the degree
is 8.
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Analyzing a Sample from SO(3)

Recall also the diagram from the morning session, where the diagrams
indicated that the dimension is 3.
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Analyzing a Sample from SO(3)

Barcodes for a 250-point-subsample of SO(3) in dimensions 0, 1, 2 and 3.
The left picture shows the standard Vietoris-Rips complex, while the barcode
on the right is constructed from the ellipsoid-driven complex. Neither
reveals any structures in dimension 3, though SO(3) is diffeomorphic to
RP3 and has a non-vanishing 3-dimensional homology group.
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Analyzing a Sample from the Segre Variety
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Analyzing a Sample from the Segre Variety

Dimension diagrams for 200 points on the variety of 2× 3 matrices of rank
1. The left picture shows dimension diagrams for the estimates in R6. The
right picture shows those for projective space RP5. The true dimension is 3.
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Analyzing a Sample from the Segre Variety

We type the following to produce a persistence diagram for homological
dimensions 0, 1, 2, 3. We display 8 longest barcodes from each barcode.
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Analyzing a Sample from the Segre Variety

The left picture shows the barcodes for the usual Vietoris-Rips complex
computed using the scaled Fubini-Study distance and the right picture
shows the barcodes using the scaled Euclidean distance. Because the variety
of 2× 3 rank one matrices has the same topology as RP1 × RP2 the Betti
numbers are 1, 2, 2, 1 in mod 2 coefficients for dimension 0, 1, 2, 3,
respectively.
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Conformation Space of Cyclo-Octane

The third sample, which is 6040 points from the conformation space of
cyclo-octane, is taken from the Javaplex Tutorial by Adams and Tausz.

Sara Kalǐsnik | November 23, 2018 58 / 62



Learning Algebraic Varieties from Samples

Conformation Space of Cyclo-Octane

Cyclo-octane consists of 8 carbon atoms arranged in a ring and each
bonded to a pair of hydrogen atoms. The location of the hydrogen atoms is
determined by that of the carbon atoms due to energy minimization. Hence,
the conformation space of a cyclo-octane consists of all possible spatial
arrangements, up to rotation and translation, of the ring of carbon atoms.
Each datum is a point in R24 = R8·3, which represents the coordinates for
{z0, . . . , z7} ⊂ R3, the locations of carbon atoms in cyclo-octane.
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Conformation Space of Cyclo-Octane

Each carbon atom z forms an isosceles triangle with its two neighbors in a
way that that the angle at z is 2π

3 . Therefore, by the law of cosines there is
a constant c > 0 such that the squared distances di,j = ‖zi − zj‖2 satisfy
di,i+1 = c and di,i+2 = 8

3c for all i (here i is modulo 8).
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Conformation Space of Cyclo-Octane

M.W. Brown, S. Martin et. al: Algorithmic dimensionality reduction for molecular structure analysis

S. Martin, A. Thompson, E. A. Coutsias, and J. P. Watson: Topology of cyclo-octane energy landscape.

The conformation space of cyclo-octane is the union of a sphere with a Klein

bottle, glued together along two circles of singularities.
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Conformation Space of Cyclo-Octane

Barcodes for a subsample of 500 points from the cyclo-octane dataset. The
left plot shows the barcodes for the usual Vietoris-Rips complex. The right
picture shows barcodes for the ellipsoid complex. The right barcode
captures the correct homology.
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